
This is a post-peer-review, pre-copyedit version of an article published in
Journal of Cleaner Production. The final authenticated version is available
online at: https://doi.org/10.1016/j.jclepro.2021.128661

© 2021. This manuscript version is made available under the CC-BY-
NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/

4.0/

1

https://doi.org/10.1016/j.jclepro.2021.128661
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


Towards a framework for fishing route optimization

decision support systems: Review of the state-of-the-art

and challenges

Igor Granadoa,∗, Leticia Hernandob, Ibon Galparsoroa, Gorka Gabiñaa,
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Abstract

Route optimization methods offer an opportunity to the fisheries industry to
enhance their efficiency, sustainability, and safety. However, the use of route
optimization Decision Support Systems (DSS), which have been widely used
in the shipping industry, is limited in the case of fisheries. In the first part,
this work describes the fishing routing problems, reviews the state-of-the-art
methods applied in the shipping industry, and introduces a general frame-
work for fishing route optimization decision support systems (FRODSS). In
the second part, we highlight the existing gap for the application of DSS in
fisheries, and how to develop a FRODSS considering the different types of
fishing fleets. Finally, and using the diverse Basque fishing fleet as a case
study, we conclude that fishing fleets can be summarized into four main
groups whose fishing routes could be optimized in a similar way. This char-
acterization is based on their similarities, such us the target species, fishing
gear, and the type and distance to the fishing grounds. These four groups
are: (i) small-scale coastal fleet; (ii) large-scale pelagic fleet; (iii) large-scale
demersal fleet; and (iv) the distant-water fleet. Distant-water vessels are
currently the fleet that can more easily benefit from FRODSS, and they are
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used as an example here. However, the rest of the fleets could also bene-
fit through adequate adaptation to their operation characteristics, driven by
their specific fishing gear and target species.

Keywords: Route optimization, Decision support systems, Fisheries
planning, Weather routing, Ship routing and scheduling, Exact and
heuristic algorithms

1. Introduction1

Maritime shipping is the most important goods transport mode in the2

world, representing around 90% of global trade (George, 2013). Shipping,3

as well as fisheries, require a large amount of energy to operate, and this4

consumption represents a large portion of their cost and Greenhouse Gas5

(GHG) emissions. Therefore, improving efficiency in this industry could have6

a great impact on increasing profits, while reducing costs and environmental7

impacts. The efficiency improvements could focus on six main potential8

areas (Bouman et al., 2017): (i) hull design, which encompasses the hull9

dimension, shape and weight with the challenge of minimizing the water10

resistance faced by vessels (Lindstad et al., 2014); (ii) economy of scale, by11

means of using large vessels since they tend to be more energy-efficient per12

freight unit (Gucwa and Schäfer, 2013); (iii) power and propulsion, which13

includes the design of new systems aimed at improving efficiency and energy14

saving (Sciberras et al., 2015); (iv) fuels and alternative energy sources, which15

involves the improvement of existing ones and the search for new energy16

sources (Gabiña et al., 2019); (v) speed reduction, the so-called slow steaming17

where many ships operate at less than their maximum speed to reduce their18

fuel consumption (Cariou, 2011); and (vi) ship routing, which consists in19

finding the optimum route and speed (Christiansen et al., 2004).20

Out of the six areas of efficiency cited previously, the present study fo-21

cuses on ship routing and its application for fisheries. The planning horizon22

influences the problem objectives and constraints. Usually, these planning23

levels are defined as strategic (long-term), tactical (medium-term) or op-24

erational (short-term) (Christiansen et al., 2004). We will not discuss the25

strategic problems in detail here, and for further information readers may26

refer to some of these works (Christiansen et al., 2004, 2013). At tactical27

level, the ship routing problem is known as the ship routing and scheduling28

problem, whereas at operational level it is called ship weather routing. There-29
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fore, here the ship routing problem refers to two different maritime problems30

according to the planning horizon level at which they are stated and solved31

(Table 1). The ship routing and scheduling is a distribution problem where32

the goal is to find a path - or paths - that visits a set of ports (routing),33

and arrange stops/visits in an optimal possible sequence (scheduling) in or-34

der to for a ship or multiple ships to pick up and deliver some cargoes. By35

contrast, the ship weather routing refers to a short path problem for a single36

ship that estimates the optimal path between two known points according37

to one or more objective functions, and considering the weather effect on the38

ship performance (Zis et al., 2020).39

Problem Formulation Planning horizon Scope Main objectives Main constraints Example of problems

Weather routing
(operational)

SPP
Short-term

(1day-1 week)
One vessel Time or FOC

- Time window
- Ship capacity
- Draft limit

- Best course and/or
speed between two points

Routing and
scheduling (tactical)

TSP/VRP
Medium-term

(1 week – 1 year)
One vessel or
multiple vessels

Cost or profits
- Land avoidance
- Shallow waters
- Safety

- Routing and scheduling
- Fleet deployment
- Scheduling and speed
optimization
- Cargo allocation

Table 1: Summary of the main characteristics of the studied planning horizon. Notes:
TSP is the travelling salesperson problems; VRP is the vehicle routing problem; and SPP
is the shortest path problem; FOC is the fuel-oil consumption.

These tactical and operational ship routing methods are usually em-40

bedded into decision support systems (DSS) (Lazarowska, 2014; Vettor and41

Soares, 2015; Lee et al., 2018a), which are computer-based information sys-42

tems developed in order to support managers in the decision-making pro-43

cesses. Fishing activities need similar levels of planning to other marine ac-44

tivities, but the development of fishing route optimization decision support45

systems (FRODSS) is scarce. This is because the tactical and operational46

fishing planning is one of the most challenging since fisheries must face addi-47

tional uncertainties, such as fish ground location and policy limitations (e.g.48

catches or time at sea). Therefore, to define a fishing planning strategy, a49

FRODSS should consider these added uncertainties and other fishing partic-50

ularities, such as the target species, fishing gear, specific legislation, or the51

distance to the fishing grounds.52

In general, the shipping industry has a long history of implementing ship53

routing methods, especially for large ships and long distances (Takashima54

et al., 2009). Usually, the goal is to reduce their operation cost, fuel-oil55

consumption, sailing time, or increase their profit. However, recently, new56

regulations are also trying to minimize their environmental impact, such as57
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the establishment of four emission control areas (ECAs) to reduce ship emis-58

sions (Ma et al., 2020). On average, global shipping and fishing contributed59

2.6% of the annual global anthropogenic CO2 emission for the period 2013-60

2015 (Olmer et al., 2017). This emission represented around 930 million61

tonnes of CO2, of which the industrial fishing vessels accounted for approx-62

imately 40 million tonnes of CO2. Nevertheless, this number is probably an63

underestimation, as other studies suggest that industrial and semi-industrial64

fishing vessel emissions account for 159 and 48 million tonnes of CO2, re-65

spectively (Greer et al., 2019). Within the different marine sectors, shipping66

emissions increased by 1.8%, whereas the fishing emission increased by 17%67

for the period 2013-2015 (Olmer et al., 2017). Furthermore, future projec-68

tions estimate an increase of maritime CO2 emissions, including fisheries, of69

between 50% and 250% for the year 2050, depending on future economic and70

energy developments (IMO, 2015). Although, CO2 is the main contributor of71

the fisheries carbon footprint, there are other greenhouse gases (GHG) that72

contribute to shipping’s climate impact, such as black carbon (BC), methane73

(CH4) and nitrous oxide (N2O). These pollutants are estimated to contribute74

around 25% of the CO2 equivalent (Olmer et al., 2017). Shipping activities75

also emitted other important air pollutants, such as nitrogen oxides (NOx),76

sulphur oxides (SOx) and particulate matter (PM).77

Unlike shipping, the environmental impacts of fishing activities have mainly78

been focused on overfishing of the target stocks, incidentally caught organ-79

isms, physical damage to benthic communities and substrates, and the alter-80

ation of ecosystem structures and functions (Hospido and Tyedmers, 2005).81

By focusing on these biological impacts, the environmental analysis of fish-82

eries has underestimated other impacts, such as energy and material use,83

anti-fouling paints, or gear use and loss at sea (Vázquez-Rowe et al., 2010).84

In this context, the use of life cycle analysis (LCA) can provide the oppor-85

tunity to identify and assess all the fishing activities and hence, lead to a86

more effective reduction of the overall impacts of fisheries (Avad́ı and Fréon,87

2013). For example, some LCA studies suggest that the fuel consumption of88

fishing vessels account for between 60% and 90% of the total life cycle GHG89

emission (Tyedmers and Parker, 2012).90

The first purpose of this manuscript is to give a definition of the fishing91

problem along with a review of the state-of-the-art of ship routing, specif-92

ically, in terms of the algorithms, objectives and constraints applied in the93

shipping industry, and how they can be applied to fisheries (Section 2). This94

review will allow readers to follow and evaluate the current procedures used,95
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and how they are integrated into a DSS. The second goal is to identify the96

current gaps in the application of these routing methods to fishing vessels,97

and to give advice for future work in tactical and operational ship routing in98

fisheries (Sections 3 and 4). This review is intended for fishing companies,99

policy-makers, and research communities, to show the potential of these tech-100

niques and the needs for the development of a fishing routing decision support101

system (FRODSS). Research communities can find the technological and sci-102

entific gaps that need to be filled for the development of FRODSS. Fishing103

companies can see the economic benefits, and a guide to implement the de-104

cision systems. Policy-makers can understand the needs for the development105

of FRODSS to guide policies and funding. To the best of our knowledge,106

no studies have attempted to develop specific fishing routing methods while107

considering their fishing particularities.108

2. A decision support system (DSS) for ship routing problem in109

fisheries110

Fishing vessels increase their profit and long-term sustainability through111

different strategies, such as fuel consumption reduction, catching high value112

species, reducing time at sea, or catching larger size fish, whilst dealing with113

constraints, such as emissions, bycatch limitations, or catch quotas, among114

others. These goals and constraints can be balanced by means of FRODSSs115

to aid in tactical and operational decision-making processes.116

1. Tactical decision varies from setting the departure-arrival dates, fishing117

ground selection, or landing port selection, among others. The plan-118

ning horizon of this problem ranges from one week to several weeks.119

This problem refers to fishing vessels departing from port to search for120

fish schools, and once they catch enough fish or a specific fishing trip121

duration is met, returning to a port to discharge the catches. The de-122

parture and arrival port can be different, and each fishing vessel can123

visit one or several fishing grounds during the fishing trip. The num-124

ber of fishing grounds visited may be based on the vessel capacity, the125

current catches, the fuel-oil consumption, or a predefined trip duration.126

2. The operational fishing planning problem consists of defining the ves-127

sel’s heading and/or speed between the departure/arrival port and each128

fishing ground. For that, once the problem has been solved at tac-129

tical level, and therefore the waypoints are defined, the operational130
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problem attempts to find the best path between each pair of known131

waypoints/fishing grounds, considering the weather effect on the vessel132

performance along the route. This operational planning is usually lim-133

ited to the next few hours or days at most, due to changing environment134

conditions and potential fishing grounds.135

Therefore, the fishing routing problem could be addressed in two phases:136

(i) as a ship weather routing system at operational level; and (ii) as a rout-137

ing and scheduling problem at tactical level. At tactical level, the fishing138

problem, like most of the maritime shipping problems, could be formulated139

as a variant of the well-known travelling salesperson problem (TSP) or ve-140

hicle routing problem (VRP). These TSP or VRP problems could be formu-141

lated using two different scenarios: static (Mesquita et al., 2017) or dynamic142

(Groba et al., 2015). In the literature, there are a lot of studies working in143

dynamic VRP. However, in ship routing and scheduling problems, dynamic144

approaches are still scarce because the occurrence of dynamic scenarios is145

highly unlikely (Psaraftis et al., 2016). In contrast, dynamic scenarios are146

more common in weather routing problems since they deal with the high147

variation and uncertainty of weather conditions. However, a limitation to148

formulating a unique problem for the entire fishing sector is the high variety149

of target species, fishing gear, distance to fishing grounds and management150

constraints within the fishing fleets. For example, target species have a big151

impact on vessel characteristics, fishing pattern, management constraints,152

and fuel consumption.153

A general framework for a ship routing DSS can be defined by four layers154

(Fabbri et al., 2018). However, an additional layer needs to be added for the155

fishing industry case in order to consider the fishing particularities, such as156

fishing gear used, the target species, the fleet composition, management reg-157

ulations and/or target market logic (e.g., fresh or canned). These five layers,158

and how they are integrated together to create a fishing route optimization159

decision support system (FRODSS), are summarized in Fig. 1.160

The five layers of a FRODSS are:161

� Environmental layer, which provides the metocean information needed162

to model the ship behaviour under different weather conditions, and163

some of the fishing layer elements. The most common approach for164

ship routing is to use some of the critical weather variables (i.e., waves,165

wind and/or currents) affecting ships’ performance (Sidoti et al., 2016).166
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Figure 1: A general scheme of a fishing route optimization decision support system
(FRODSS).
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In the case of fisheries, these critical variables are those related to the167

target species distribution models.168

� Ship modelling layer, which predicts the ship behaviour under differ-169

ent weather conditions by using the data provided by the environment170

layer along with the ship characteristics (Gkerekos and Lazakis, 2020).171

Nevertheless, its accurate estimation is a complex and difficult task due172

to the presence of uncertain stochastic processes and its dependence on173

many factors (Soner et al., 2018).174

� Fisheries layer, which is the layer that considers the fishing partic-175

ularities such as species distribution and abundance predictions (Gal-176

parsoro et al., 2009); fishing grounds selection (Iglesias et al., 2007);177

fishing pattern detection using automatic identification system (AIS)178

data (Taconet et al., 2019); fish price (Guttormsen, 1999), and de-179

mand models (Eales et al., 1997); and tuna or bycatch detection by180

means of echo-sounder buoys attached to Fishing Aggregation Devices181

(FADs) (Orue et al., 2019; Mannocci et al., 2021). However, the results182

of these models usually have high uncertainty, adding more complexity183

to the problem of finding the optimal route and fishing solution.184

� Routing and planning layer, which searches for the optimal route185

according to the input of the previous three components. This layer is186

the core of the DSS, and the optimal route is computed according to187

the objectives and optimization algorithm. A review of the main ob-188

jective functions and optimization algorithms used in weather routing189

is conducted in Section 2.1 and Section 2.3, respectively.190

� Decision layer, which is the graphical component that interacts with191

the final user by selecting the final route. The design of this software192

application will depend on the desired format to display the selected193

route and the needed interaction between the user and the routing and194

planning layer. Some examples are given in (Lazarowska, 2014; Vettor195

and Guedes Soares, 2016).196

2.1. Objective functions197

The objectives used in the ship routing problem can vary depending on198

the planning horizon. At tactical level, the objectives are usually more global,199

whereas at operational level the objectives focus on more specific goals. The200
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overall cost reduction or the increase of profit are commonly used in ship201

routing and scheduling problems at tactical planning level. There are also202

other goals that have been gaining more interest recently to reduce shipping203

environmental impacts, such as emission reduction (Fagerholt et al., 2015).204

Fisheries can use similar indicators. However, assessing the overall cost and205

profits faces the uncertainty variable duration driven by catches.206

At operational level, the most studied objectives have been the sailing207

time, fuel-oil consumption (FOC), and safety. Common approaches to opti-208

mize the minimum-time objective consider that ship speed is affected by209

the sea conditions (involuntary speed reduction). This can also include the210

voluntary speed reduction (Sen and Padhy, 2015; Mannarini et al., 2016a).211

One of the first approaches that optimized the fuel consumption was di-212

rectly proposed by (Klompstra et al., 1992), and nowadays this is one of213

the main concerns of the shipping industry. The operational fishing routing214

should use indicators that consider landings, such as fuel consumption per215

catch (L fuel / tn catch landed) (Damalas et al., 2015), and detailed by target216

species, fishing gear, fishing effort or region (Greer et al., 2019). A safety217

consideration was also studied with the aim of avoiding rough weather areas.218

In our case, we have to consider that fishery is one of the most dangerous219

occupations in the world with 80 deaths per 100,000 fishers per year (FAO,220

2018).221

In practice, the fishing routing problem is not limited to optimizing a222

unique objective function. Multiple objectives can be addressed in two ways.223

Firstly, by optimizing a weighted combination of the desired objectives in one224

objective function (Kosmas and Vlachos, 2012), and secondly, to use a multi-225

objective optimization solving strategy, which treat each objective separately226

(Vettor and Guedes Soares, 2016). In the first approach, these weighted227

parameters can be tuned to give a relative importance to each objective228

based on the user’s preferences. However, the solution found might not be229

accepted as a good solution, requiring further tuning of the weights Maki230

et al. (2011). In the second technique, the optimization of one objective often231

comes at the expense of the others. Hence, there may be no single solution232

that optimizes all objective functions at once. That is why there is a set of233

optimal solutions that form the so-called Pareto Front (Newbery and Stiglitz,234

1984). This approach adds flexibility to the route optimization, allowing us235

to vary the preference for each objective depending on the interests at that236

time.237
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2.2. Constraints238

At tactical planning level, the most studied and common constraints in239

shipping are the time windows, ship capacity, or draft limit. The time window240

usually refers to the unloading/loading service times allowed at ports, (Sigurd241

et al., 2005); ship capacity is the ship’s cargo carrying capacity measured in242

weight or volume (St̊alhane et al., 2015); and the draft limit depends on each243

port infrastructure and the load weight, which can limit the ports that a244

ship can visit (De et al., 2017; Yamashita et al., 2019). At operational level,245

the necessary constraints to consider are land and shallow water avoidance,246

since these constraints represent non-navigable geographic areas that a ship247

route cannot cross (Fang and Lin, 2015; Vettor and Guedes Soares, 2016).248

There are other weather-related constraints, such as storm area avoidance,249

emission-controlled areas, or navigation safety constraints that try to keep250

the unstable ship motion-limiting criteria within some limits (Szlapczynska,251

2015; Fang and Lin, 2015; Vettor and Guedes Soares, 2016).252

Apart from the common constraints that are used in shipping and that253

can be translated directly to fishing routing, there are some specific fishing254

constraints. The main management constraints to consider in fishery plan-255

ning include the total allowable effort (TAE), total allowable catch (TAC),256

quota regulations and landing obligation. TAE is the maximum number of257

fishing days by fishing area and by vessels during a specific period, whereas258

TAC is the maximum quantity of fish catch that can be caught from a spe-259

cific stock over a given period of time (Prellezo et al., 2016). TACs are catch260

limits (expressed in tonnes or numbers) that are set for most commercial261

fish stocks. TACs are shared between EU countries in the form of national262

quotas. By 2019, all species subject to TAC limits or Minimum Conservation263

Reference Sizes (in the Mediterranean) were subject to the landing obligation264

(Reg, 2008). For mixed fishery, this could involve some problems as there265

will always be a choke species that can potentially limit their fishing effort266

on other species (Prellezo et al., 2016). Finally, there are more specific con-267

straints based on the type of fishing vessel. This will be discussed for each268

fleet in Section 3.1.269

2.3. Algorithms for solving ship routing problems270

There are two types of optimization methods: exact and heuristic. Ex-271

act algorithms guarantee the optimal route, normally at the expense of the272

computation time, whereas heuristic approaches run faster but do not guar-273

antee the optimal route. It should be emphasized that the following sections274
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will focus on operational (see Subsection 2.3.1) and tactical (see Subsection275

2.3.2) routing problems, and they do not present an extensive survey but276

rather provide an overall view of the main algorithms applied in each ship277

routing area.278

2.3.1. Operational ship weather routing methods279

Table 2 lists a number of papers related to ship weather routing, with280

respect to the algorithm used, and the optimized objectives, together with281

the main constraints and ship types. These constraints do not include land282

avoidance or control constraints (speed or heading limits) since they are283

mandatory to produce a realistic route. Furthermore, motion constraint284

encompasses the ships’ unstable motions that are used as safety and comfort285

criteria. Some key optimization algorithms applied in the field are described.286

Ref. Ship type Objective function Main constraints Algorithm

E
x
ac

t

(James, 1957) Trans-ocean ship Min time Isochrone
(Hagiwara, 1989) Sail-assisted ship Min time, FOC, or cost Modified Isochrone
(Klompstra et al., 1992) Container ship Min FOC ETA, water depth Isopone
(Zoppoli, 1972) Cargo-ship Min time Dynamic programming
(Shao et al., 2012) Container ship Min FOC Motion Dynamic programming
(Takashima et al., 2009) Coastal merchant ship Min FOC Dijkstra’s algorithm
(Skoglund, 2012) General Min time and FOC Dijkstra’s algorithm
(Sen and Padhy, 2015) Coastal ships Min time Motion Dijkstra’s algorithm

H
eu

ri
st

ic

(Fang and Lin, 2015) Container ship Min time and FOC Motion, water depth 3D Modified Isochrone
(Guinness et al., 2014) Ice-going ship Min cost function Motion A* algorithm
(Yoon et al., 2018) Container ship Min FOC Motion A* algorithm
(Grifoll et al., 2018) Ro/Ro ship Min time A* algorithm
(Marie and Courteille, 2009) Motor vessel Min time and FOC Genetic algorithm
(Lee et al., 2018b) Container ship Min FOC ETA Genetic algorithm
(Szlapczynska, 2015) General Min FOC, time, and max safety Water depth, piracy areas Genetic algorithm

and high wind areas
(Vettor and Soares, 2015) Container ship Min FOC, time, and max safety Motion Genetic algorithm
(Ibarbia et al., 2011) Oceanographic ship Min time Simulated Annealing
(Kosmas and Vlachos, 2012) General Min time and max safety Simulated Annealing
(Li and Qiao, 2019) Wind-assisted ship Min FOC and max safety ETA Simulated Annealing
(Tsou and Cheng, 2013) Transoceanic ship Min cost Motion Ant colony algorithm
(Lazarowska, 2014) General Min distance Motion Ant colony algorithm
(Lee et al., 2018a) Liner shipping Min FOC and max service level Speed, ETA Particle swarm
(Zheng et al., 2019) Ocean-going ships Min FOC ETA Particle swarm
(Lin, 2018) Container ship Min time and FOC Motion Particle swarm

M
ac

h
in

e
le

ar
n
in

g (Hagiwara et al., 1996) Container ship Min time Artificial Neural Networks
(Palenzuela et al., 2010) Fishing vessels Min FOC Artificial Neural Networks
(Yoo and Kim, 2015) Theoretical Min time Motion Reinforcement learning

Table 2: The main weather routing algorithms used in the literature according to the
objective function and the main constraints considered in each case. Abbreviations are:
fuel-oil consumption (FOC) and estimated time of arrival (ETA).

In 1957, the Isochrone exact method was proposed for ship routing to287

minimize the sailing time (James, 1957). However, its computer implemen-288

tation was problematic due to the occurrence of the so-called Isochrone loop,289
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leading to the modified isochrone (Hagiwara, 1989). In contrast, the Isopone290

method was developed to optimize the fuel-oil consumption (Klompstra et al.,291

1992). There is a heuristic modification called the 3-dimensional modified292

isochrone (3DMI) (Fang and Lin, 2015).293

Dynamic programming (DP) can be divided in two main approaches.294

First, 2D dynamic programming (2DDP), which takes two dimensions into295

account, latitude and longitude (Zoppoli, 1972). And second, 3D dynamic296

programming (3DDP), which can consider the time, in addition to the loca-297

tion, during the optimization process (Shao et al., 2012).298

Dijkstra’s and A* algorithms are the most common pathfinding al-299

gorithms used to solve the shortest path problem in a weighted graph. Di-300

jkstra’s algorithm has been widely used for ship routing with the aim of301

finding the minimal time route (Sen and Padhy, 2015), the minimum FOC302

routes (Takashima et al., 2009), or a combination of both by following a303

multi-objective approach (Skoglund, 2012). The A* algorithm derives from304

the Dijkstra’s algorithm (low computational efficiency) and the greedy al-305

gorithm (fast search speed) (Hart et al., 1968). It gives a balance between306

search speed and global optimality. This method has been broadly used for307

route optimization in different situations, for example, in ice-covered waters308

(Guinness et al., 2014), routing in short distances (Grifoll et al., 2018) or309

transoceanic routing (Yoon et al., 2018).310

Nature inspired algorithms are heuristic methods based on mimic311

natural processes. Within this group, the most commonly used method is312

the genetic algorithm (GA), which is a population-based approach that313

iteratively improves the set of best solutions or population (Goldberg, 1989).314

One of the first approaches for ship routing optimization was using a multi-315

objective genetic algorithm (MOGA) technique (Marie and Courteille, 2009).316

Other methods incorporate elitism selection, which means keeping intact the317

best or a small portion of the best solutions from the current population318

for next generation (Szlapczynska, 2015; Vettor and Soares, 2015). Another319

method is the NSGA-II (non-dominated sorting genetic algorithm), which320

uses fast non-dominated sorting and crowd-distance comparison to select the321

next set of solutions in each iteration (Lee et al., 2018b). Other nature322

inspired methods used for ship routing are: i) Simulated annealing al-323

gorithm (SA), which mimics the annealing process of metallurgy, which is324

a heat treatment that involves warming a material and then slow cooling325

(Ibarbia et al., 2011; Kosmas and Vlachos, 2012; Li and Qiao, 2019); ii) Ant326

colony algorithm (ACA), which is a probabilistic technique inspired by327
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ants’ foraging behaviour Tsou and Cheng (2013); Lazarowska (2014); and iii)328

Particle swarm optimization (PSO), which is a population-based method329

that mimics the social behaviour of organisms in groups, such as birds or fish330

(Lee et al., 2018a; Lin, 2018; Zheng et al., 2019).331

Machine learning is a growing research field that is involved in finding332

patterns or mine knowledge from data. A neural network algorithm (ANN)333

was among the first to be applied to weather routing (Hagiwara et al., 1996;334

Palenzuela et al., 2010). A reinforcement learning algorithm (Q learning al-335

gorithm) was used for route planning to minimize the sailing time considering336

the current effects (Yoo and Kim, 2015).337

2.3.2. Tactical ship routing and scheduling methods338

Table 3 lists a number of papers related to ship routing and scheduling339

problems, with respect to the shipping mode, problem type, the optimized340

objectives together with the main constraints, and the solution method used341

to solve the problem. The main constraints considered to complete the ta-342

ble are time window (TW), ship capacity (SC), allocation (AL), ship/cargo343

compatibility (SC-C), port/ship compatibility (PS-C), customer/ship com-344

patibility (CS-C), route/schedule compatibility (RS-C) and draft limit (DL).345

Some key optimization algorithms applied in the field are:346

Branch-and-bound (B&B) consists of a systematic enumeration of all347

candidate solutions (branches), where large subsets of partial solutions are348

discarded if they cannot improve on the current best solution (bounds) (Land349

and Doig, 2010). This exact approach was used in tramp ship scheduling with350

both optional and contracted cargos (Appelgren, 1971) It was also used to351

solve the offshore wind farm maintenance problem (St̊alhane et al., 2015).352

There are other variants, such as branch-and-cut (Malaguti et al., 2018;353

Homsi et al., 2020) or branch-and-price (Sigurd et al., 2005; Wen et al.,354

2017).355

Fagerholt and Christiansen (2000b) used a dynamic programming356

(DP) method to solve a travelling salesman problem with allocation, time357

Window and precedence constraints (TSP-ATWPC). The DP algorithm was358

also used to solve a combined multi-ship pickup and delivery problem with359

time windows (m-PDPTW), and multi-allocation problem (Fagerholt and360

Christiansen, 2000a). Arnesen et al. (2017) used a forward dynamic pro-361

gramming method to solve a real ship routing and scheduling problem of a362

chemical shipping company. The problem was formulated as a TSP with363

Pickups and Deliveries, Time Windows and Draft Limits (TSPPD-TWDL).364
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Ref.
Mode of
shipping

Problem type
Objective
function

Main constraints Solution method Solution

(Appelgren, 1971) General Ship’s cargo scheduling Max profit Branch-and-bound Exact
(St̊alhane et al., 2015) Industrial VRP with pickup and delivery Min cost SC, TW Branch-and-bound Exact

(Arnesen et al., 2017) General TSP with pickup and delivery Min cost DL, SC
Branch-and-cut and
Heuristic procedures

Exact and
Heuristic

(Malaguti et al., 2018) Tramp/Industrial
TSP with pickups, deliveries,
and draft limits

Min cost SC, DL
Branch-and-cut and
Heuristic procedures

Exact and
Heuristic

(Homsi et al., 2020) Tramp/Industrial PDP with time windows Min cost SC, TW, SC-C
Branch-and-price and
a hybrid metaheuristic

Exact and
heuristic

(Wen et al., 2017) General VRP with pickup and delivery
Min time, cost
and emissions

SC
Branch-and-price and
constraint programming

Heuristic
and Exact

(Sigurd et al., 2005) Liner Periodic VRP with pickup and delivery Min cost TW, SC, PS-C Branch-and-price Heuristic
(Battarra et al., 2014) General TSP with draft limits Min cost DL Branch-cut-and-price Exact

(Fagerholt and Christiansen, 2000b) Industrial
TSP with allocation, time window
and precedence constraints

Min cost TW, AL, SC Dynamic programming Exact

(Fagerholt and Christiansen, 2000a) Industrial
Multi-ship pickup and delivery with
time windows and multi-allocation

Min cost TW, SC, AL Dynamic programming Exact

(Korsvik and Fagerholt, 2010) Tramp
Multi-vehicle PDP with time windows
and flexible cargo quantities

Max profit TW, SC Tabu search Heuristic

(Charisis et al., 2019) Tramp/Industrial
VRP with time windows and split
deliveries

Min cost TW, SC Tabu search Heuristic

(Brønmo et al., 2007) Tramp PDP of bulk cargoes Max profit TW, SC Multi-start local search Heuristic
(Fagerholt et al., 2009) Tramp Multi-vehicle PDP with time windows Max profit RS-C, TW, SC Multi-start local search Heuristic
(Norstad et al., 2011) Tramp PDP with speed optimization Max profit TW, SC Multi-start local search Heuristic
(Yamashita et al., 2019) Industrial PDP with time windows Min cost TW, SC, DL, PS-C Multi-start heuristic Heuristic
(Malliappi et al., 2011) Tramp PDP with time windows Max profit TW, SC Variable neighborhood search Heuristic
(Castillo-Villar et al., 2014) Tramp VRP with time window Min cost TW Variable neighborhood search Heuristic
(Lin and Liu, 2011) Tramp VRP with time windows Max profit TW, SC Genetic algorithm Heuristic

(Al-Hamad et al., 2012) Industrial
VRP with pickup, deliveries
and time windows

Min cost TW, SC Genetic algorithm Heuristic

(Moon et al., 2015) Tramp
Ship routing and scheduling + fleet
deployment + network design

Min cost SC Genetic algorithm Heuristic

(Song et al., 2017) Liner
Ship deployment + sailing
speed + service scheduling

Min cost TW, SC Genetic algorithm Heuristic

(De et al., 2017) General
Sustainable ship routing and scheduling
with draft restrictions

Max profit and
min emissions

TW, DL, SC, PS-C
Genetic algorithm and
particle swarm optimization

Heuristic

(De et al., 2016) General m-VRP with pickup and delivery Min cost TW, SC
Particle Swarm Optimization
-Composite Particle

Heuristic

Table 3: The main algorithms used in the literature to solve the routing and scheduling
problem. Abbreviations are: pickup and delivery problem (PDP); vehicle routing problem
(VRP); travelling salesperson problem (TSP); time window (TW), ship capacity (SC),
allocation (AL), ship/cargo compatibility (SC-C), port/ship compatibility (PS-C), cus-
tomer/ship compatibility (CS-C), route/schedule compatibility (RS-C), and draft limit
(DL).
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Within the local search-based methods there are three main approaches365

used in ship routing and planning: tabu search (TS), multi-start local366

search (MLS), and variable neighbourhood search (VNS). TS method367

had been used for different routing and scheduling problems, such as with368

flexible cargo quantities (Korsvik and Fagerholt, 2010), or with multiple time369

windows, split loads and berth constraints (Charisis et al., 2019). Brønmo370

et al. (2007) implemented an MLS heuristic that was based on a partly ran-371

domized insertion heuristic for initial solution generation, and then improved372

by a local search heuristic. Based on a similar approach, (Fagerholt et al.,373

2009) integrated an MLS heuristic into a DSS with the aim of presenting a set374

of good solutions rather than the optimal one. Another multi-start heuristic375

was implemented to solve a real-life pickup and delivery problem for an oil376

company (Yamashita et al., 2019), and to solve the combined problem of a377

tramp ship routing and scheduling with speed optimization (Norstad et al.,378

2011). A VNS method was applied to a tramp ship scheduling problem by379

Malliappi et al. (2011). Furthermore, the VNS method was compared with380

a multi-start local search and a tabu search, showing that the VNS method381

outperforms both techniques in terms of solution quality and computational382

time (Malliappi et al., 2011).383

A genetic algorithm (GA) approach was used by Lin and Liu (2011)384

to solve the ship routing problem of tramp shipping, considering the ship385

allocation, freight assignment, and ship routing simultaneously. A GA was386

also used in a ship routing and scheduling problem with time windows for387

industrial shipping (Al-Hamad et al., 2012). A GA with local search was388

proposed to address three NP-hard maritime problems (Moon et al., 2015):389

i) a location–allocation problem, ii) a TSP between hubs; and iii) m-VRP390

of ship routing. The multi-objective genetic algorithm (MOGA) technique391

has also been used to solve maritime problems (Song et al., 2017; De et al.,392

2017). In De et al. (2017), a multi-objective particle swarm optimization393

method was implemented to solve a ship routing and scheduling problem,394

considering the time window concept, sustainability aspects, and vessel draft395

restriction. A variant of Particle Swarm Optimization of Composite Particle396

was employed for solving the ship routing and scheduling problem (De et al.,397

2016).398
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3. Definition of a framework for Fishing Route Optimization De-399

cision Support Systems (FRODSS) framework by fleet type400

There is a general goal to reduce GHG emissions worldwide, and the401

fishing industry is also expected to contribute to GHG emission reduction.402

In Europe, for example, the objective is to reach zero emissions by 2050,403

and with an intermediate target reduction of 50% to 55% by 2030 (Euro-404

pean Commission, 2019). LCA analysis reviews indicate that vessel fuel405

consumption is the main contributor to GHG emissions during fishing vessel406

life (Pelletier et al., 2007; Avad́ı and Fréon, 2013). Moreover, its consumption407

may represent a large portion of the total operational costs, this being one of408

the main concerns of fishing companies (Basurko et al., 2013). Conversely,409

fishing fuel consumption and emissions per landed tonne of catches increased410

up to 20% between 1991 and 2011 (Parker et al., 2018). This was due to411

the increase in fishing effort worldwide without an increase in fish landings412

(Bell et al., 2017). Furthermore, Lotze et al. (2018) forecast no increase of413

fish biomass in the best-case climate scenario, or up to a 30% decrease in fish414

catches under the worst-case scenario by the end of the century. This, along415

with the volatile fuel price, can have a big impact on the fishing industry,416

fish prices, and food security of some countries (Parker et al., 2018).417

The use of planning and optimization methods in fisheries is sparse due418

to the complexity, which goes beyond the classical shipping needs, since419

fisheries must face the weather/problem uncertainty together with the un-420

certainty of finding the target species or not. Fisheries also have their own421

constraints, such as the need to consider quotas, bycatch (incidental fishing422

of non-targeted or even endangered species), fishing time window limitations,423

competing fleets, or even pirates in some distant-water fleets. Furthermore,424

there are another four main challenges that can explain the lack of tech-425

nology integration into fisheries: (i) upfront costs and insufficient access to426

capital; (ii) legal and bureaucratic barriers; (iii) failure to implement data427

collection standards; and (iv) lack of trust and buy-in from fishers (Bradley428

et al., 2019).429

This abundance of challenges may explain why fishing route optimization430

research has been limited to one vessel or activity at operational level (i.e.,431

ship weather routing) (Mannarini et al., 2016a,b). For example, Vettor and432

Guedes Soares (2016) only optimize the routes from port to hypothetical433

fishing areas (Valencia to Malta waters), but not the search for fish or fishing434

operations. Another study used a machine learning approach (ANN model),435
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optimizing the routes of six fishing vessels that operated in different fishing436

grounds (Palenzuela et al., 2010). At tactical level, the only example in437

terms of fleets in the literature was the distant-water purse seiners searching438

for tuna, addressing it as a dynamic travelling salesperson problem (DTSP)439

(Groba et al., 2015). An improvement on the previous approach was carried440

out by considering that a fishing fleet designs a common FAD recollection441

strategy (Groba et al., 2018). Sharing FAD information between vessels with442

the correct incentives would further reduce fuel consumption as suggested by443

(Groba et al., 2020).444

This sparsity of applications shows the big potential for digitalization of445

the fishing fleets, and the application of DSS adapted to Fishing operations446

(FRODSS). Here, a characterization of the Basque fishing fleet is used as an447

example of worldwide fishing fleets for the formulation of FRODSS (Taconet448

et al., 2019).449

3.1. Characterization of fishing fleet types: Basque fishing fleet example450

Fishing gears used by the Basque fleet can be grouped into 12 main451

gears (Fernandes et al., 2019), which, in turn, can be classified as active,452

non-active or miscellaneous (Boopendranath, 2012). Active gears are mostly453

based on chasing the target species and catch fish by trapping or encir-454

clement. Whereas non-active gears are usually placed for several days before455

being hauled, and the target species swing towards the net, trap, or hooks456

and lines. Recently, eight types of fishing gears have been analyzed in several457

project at AZTI (Basurko et al., 2013; Gabiña et al., 2016; Uriondo et al.,458

2018), showing that their fuel consumption varies from 1.94 L/ mile to 74.2459

L/mile (Table 4).460

Targeted fish species can be classified as: (i) shellfish, which encompass461

various species without capacity for significant migration patterns that are462

targeted mainly by some non-active gears; (ii) demersal species, which live463

on or near the seafloor with limited migration capacity, targeted mainly by464

trawlers, gillnetters and bottom longliners; (iii) small pelagic inhabit the wa-465

ter column, either near the sea surface or in middle depths with seasonal466

migration patterns, and are targeted mainly by purse seiners, mechanized467

handlines and pole-lines; and (iv) large pelagic are mostly tunas and tuna-468

like, sharks and billfishes with large and seasonal migration patterns, targeted469

mainly by purse seiners and longliners. Fishing time windows can be impor-470

tant for some fisheries in order to know when the fish event may occur, or471
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Nº of vessels
analyzed

Fleet type Gear
Gear

abbreviation
Mean length

(m)
Mean fuel
(L/mile)

± SD fuel
(L/mile)

1
Small-scale
coastal fleet

Gillnet,
handline

GN, LHM 9.2 2.4 -

4
Small-scale
coastal fleet

and
Large-scale
pelagic fleet

Gillnet, handline
trolling

GN, LHM, LTL 17.9 3.2 1.6

1 Longline, handline LLS, LHM 23.0 3.81 -

2
Longline, handline,

trolling
LLS, LHM, LTL 13.0 1.9 0.7

1
Large-scale
pelagic fleet

Handline, trolling LHM, LTL 26.0 3.9 -

3
Purse seine,
Pole and line

PS, LHP 36.4 10.8 0.2

3
Large-scale

demersal fleet

Bottom trawl OTB 40.0 17.9 1.2

2
Bottom trawl

in pairs
PTB 37.0 20.2 0.1

5
Distant-water

fleet
Purse seine PS 90.3 74.2 4.3

Table 4: Fuel consumption approach for different types of Basque fishing vessels and gear.
Note: bottom otter trawl (OTB): fuel consumption during trawling 35-45 L/mile; bottom
pair trawl (PTB): fuel consumption during trawling 50-55 L/mile.
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even to mitigate the bycatch (Auger et al., 2015). The relationship between472

each fishing gear and target species is shown in Figure 2.473

Excluding trawlers and distant-water vessels, the remaining fleets use474

more than one gear throughout the year (Table 4). Despite the high di-475

versity of gears, we identified four groups of fishing fleets where a similar476

planning and optimization system could be applied. These groups are based477

on their similarities, such as fishing grounds, fuel patterns, target species,478

and management constraints (Table 5).479

Basque fleets

Type Gear type GT
Overall

length (m)
Trip length

(days)
Mean catch per

trip (tonnes)
Top 1 (%) Top 2 (%) Top 3 (%)

S
m

al
l-

sc
al

e
co

as
ta

l
fl

ee
t GN 30 14.7 0.6 ± 1.0 263 Hake (31) Anglerfish (30)

Horse
mackerel (4)

LLD 81 19.3 4.5 ± 1.4 11,984
Blue shark

(99)
Mako shark

(< 1)
LLS 43 14.8 0.7 ± 1.2 713 Hake (43) Ling (40) Conger (8)

MIS 18 11.4 0.3 ± 0.1 2,808 Gelidium (98) Octopus (1)
Snakelocks

anemone (< 1)

L
ar

ge
-s

ca
le

p
el

ag
ic

fl
ee

t LHP 178 32.9 5.9 ± 3.6 25,093 Albacore (98)
Bluefin

tuna (∼ 2)
LHM 25 14.1 0.4 ± 0.6 3,355 Mackerel (99)
LTL 77 22.2 6.4 ± 5.9 5,283 Albacore (99) Bigeye (< 1))
PS 147 30.2 0.7 ± 0.3 7,471 Anchovery (41) Mackerel (39) Pilchard (13)

L
ar

ge
-s

ca
le

d
em

er
sa

l
fl

ee
t OTB 432 39.3 5.6 ± 1.4 14,059 Hake (22)

Anglerfish
(15)

Dogfish (9)

PTB 372 37.0 2.9 ± 0.8 11,0.36 Hake (97)
Atlantic John

Dory (< 1)

D
is

ta
n
t-

w
at

er
fl

ee
t OTB 901 52.0 47.3 ± 13.0 850,800 Cod (97)

Haddock
(< 2)

PS 2,849 90.3 21.8 ± 7.0 844,000
Skipjack

(67)
Yellowfin
tuna (25)

Bigeye
tuna (8)

Table 5: Summary of the Basque fleet using the logbook from 2018. Note: GT is the gross
register tonnage.

3.1.1. Small-scale coastal fleet (non-active gears)480

The first group is comprised of small coastal vessels (usually under 12481

m length): a multispecies fishery using non-active gears that are put into482

place, and then, after some hours or days the catch is retrieved. Their fish-483

ing grounds are located within the coastal waters and close to their base port.484

Therefore, they make short fishing trips with low fuel consumption per mile,485

and catches per trip of high value species (Tables 4 and 5). The main gears486

used by these fleets are longliners (LLS), gillnets (GN) and drifting longliners487

(LLD). Longliners (LLS) mainly target the demersal species, hake, ling and488

conger. LLS has two downtimes (Figure 2): i) vessels start fishing the pelagic489
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Figure 2: Total catch (black line), weekly catch average (blue line) and main species catch
series of the Basque fleet by fishing gear for 2018. Species are: Mackerel (Scomber spp.),
anchovy (Engraulis encrasicolus), pilchard (Engraulis encrasicolus), albacore (Thunnus
alalunga), blue shark (Prionace glauca), hake (Merluccius merluccius), anglerfish (Lophius
spp.), ling (Molva molva), conger (Conger conger), dogfish (Scyliorhinus canicula), At-
lantic john dory (Zeus faber), and algae (Gelidium sesquipedale).
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species, mackerel, using mechanized handlines and pole-line (LHM) gear in490

March; and ii) they target albacore tuna by trolling lines (LTL) in summer.491

Gillnets (GN) target mixed fisheries dominated by demersal species, mainly492

hake, anglerfish and horse mackerel. They have a downtime from mid-March493

until May, when most of the vessels change their gear to LHM, whereas,494

in summer, some vessels change to LTL. Drifting longliners (LLD) target495

the pelagic species blue shark, from April until mid-December. Miscella-496

neous gear (MIS), which in our case also include FPO, includes many minor497

fishing gears, and over 98% of the total catches consist of algae (Gelidium498

sesquipedale) and high value species of importance for local tourism, such as499

lobster, octopus, velvet, and brown crab (Fernandes et al., 2019).500

For this fleet, the following characteristics need to be considered for501

FRODSS development; i) the departure and arrival port may be the same; ii)502

as the travelled distance and trip duration are small the vessel speed must be503

assumed as constant; iii) fishing ground areas must be known, but the ones504

with high biomass need to be forecast based on environmental conditions; iv)505

best timing of deployment and retrieval must also be forecast based on en-506

vironmental conditions; v) as the net/trap locations are static, this problem507

could be formulated in a static environment; vi) the vessels must not limited508

by their load capacity; vii) there are no management constraints; and viii) the509

main uncertainties must be market demand/prices and weather conditions510

affecting abundance for demersal and shellfish species, or migration patterns511

for pelagic species.512

Finally, and because the fishing trips duration usually takes less than one513

day, and the use of non-active gears and the travelled distances are minimum,514

the implementation of tactical solutions (i.e., routing and scheduling) can be515

more useful than operational ones (i.e., weather routing). A FRODSS for516

this fleet would define the best locations and date to place and collect the517

nets/traps along with the optimal route that goes through these locations.518

The timing of the placing and collection is probably more important than in519

other groups, given that these gears target high value species that are caught520

in smaller quantities. Therefore, these fleets can aim at making a smaller521

number of trips when this is more profitable (e.g., tracking market demand522

and prices). The locations could be defined by the user or be based on some523

species distribution model predictions to select the areas with higher catch524

potential at lower cost (Galparsoro et al., 2009).525
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3.1.2. Large-scale demersal fleet (active gears)526

A second group is comprised of bottom trawlers (OTB and PTB) tar-527

geting demersal and benthic species by means of nets, with a trip duration528

ranging from 3 to 5 days in the case of PTB, and 5 to 7 for bottom otter529

trawlers (Table 5). One characteristic of these vessels is that they consume530

the most energy during the trawling operations (Basurko et al., 2013). Fur-531

thermore, they do not change the gear throughout the year. PTB mainly532

fish mainly hake, whereas OTB targets a mix of demersal species including533

hake, anglerfish, dogfish (Table 5), and also megrim (Lepidorhombus whiffi-534

agonis), due to its high market value. Trawlers make constant trips over the535

year with a 3-6 day duration (Table 5). Both gears have their own downtime536

period: OTB is from July to mid-August, and PTB runs from mid-August537

to the end of September (Figure 2). Their main fishing grounds are in the538

Bay of Biscay, North Sea and Celtic sea (i.e., FAO subareas 27.8, 27.7 and539

27.6, respectively), and limit their operations to sedimentary seafloor and to540

the continental shelf. The selection of these fishing areas is influenced by ex-541

perience, regulations (mainly TAC), expected harvest, external information542

received, and fuel costs (Prellezo et al., 2009). The selection of the fishing543

grounds becomes particularly important for this fleet due to landing obli-544

gation (choke species) and quota management, as they fish mixed demersal545

species.546

For this fleet, when targeting demersal species, the following assumptions547

can be used in a FRODSS: i) the departure and arrival port may be dif-548

ferent; ii) fishing grounds are known, but the ones with high biomass need549

to be forecast based on environmental conditions; iii) high biomass of choke550

species needs to be forecast to avoid quota issues; iv) the weather effect on551

ship performance should be considered; v) vessels are limited by their load552

capacity; and vi) they are affected by fishing management constraints, such553

as landing obligation. This case is similar to the previous group with the dif-554

ference of needing to consider choke species, and longer trips with multiple555

fishing events that permit the use of TSP/VRP approaches. Therefore, the556

routing problem of this fleet could be raised like the large-scale pelagic fleet557

routing problem during summer when they are targeting tuna. That is, as a558

tactical problem where the potential fishing areas are defined along with the559

visiting order, and all of this coupled with a weather routing system.560
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3.1.3. Large-scale pelagic fleet (active gears)561

The third group encompasses vessels that target shoaling and highly mo-562

bile species such as small and large pelagic. The habitat of pelagic fishes is563

the largest aquatic environment, which generates the difficulty of finding the564

fish shoals. These vessels tend to consume more fuel during routing to fishing565

grounds and searching for fish (up to 80%) than during fishing operations,566

due to the target species migration patterns (Basurko et al., 2013). This cat-567

egory includes the following active gears: purse seine (PS), trolling (LTL),568

and pole and lines (mechanized and manually). Purse seiners (PS) operat-569

ing in coastal waters of Bay of Biscay fish from March to mid-June, mainly570

fishing anchovy and mackerel; and from mid-September to mid-December,571

mainly targeting Atlantic chub mackerel and sardine (Figure 2). Coastal PS572

vessels usually make a daily trip, and their downtime starts in Mid-December573

until mid-February. During the summer, most of the PS vessels change their574

gear to pole and line with live bait (LHP) to fish albacore tuna. The trip575

duration of vessels using LHP gear are longer and more irregular due to the576

spatial migration of tuna (6.4±5.9 days, see Table 5). Mechanized pole and577

line (LHM) gear consists of a hooked line attached to a mechanized pole578

in a daily fishing trip. LTL operates during summer with an irregular trip579

duration, mainly because they follow tuna migration routes.580

During the summer (targeting tuna), their fishing trip duration and dis-581

tance are more suitable for a combination of tactical and operational route582

optimization methods. At tactical level, the problem is to define the best583

location to fish, and the optimal route to reach them in a weekly horizon.584

During the rest of the year, the trip duration (less than one day) and dis-585

tance are shorter, where the fishing route optimization approach could be586

quite similar to the approach followed for small-scale coastal fleet. The main587

difference with respect to the small-scale fleet is that the large-scale pelagic588

fleet searches for fish shoals, and a species distribution model may be more589

helpful to select the fishing ground. However, for this fleet, when targeting for590

tuna during summer, the following assumptions can be used in a FRODSS: i)591

the departure and arrival port may be different, which opens the possibility592

of selecting the landing port based on the fish sale price; ii) fishing grounds593

locations are more variable than in previous fleets, therefore the areas with594

high biomass need to be forecast based on environmental conditions; iii) that595

is why this routing problem should be formulated in a dynamic environment;596

iv) vessels might be limited by their load capacity; v) the weather effect on597
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ship performance should be considered; vi) they are affected by fishing man-598

agement constraints, such as catch quotas; and vii) the main uncertainties599

are fish shoal location and weather conditions affecting fuel consumption,600

time at sea, and safety.601

3.1.4. Distant-water fleet (active gears)602

The last group encompasses the distant-water fleet, whose main fishing603

grounds are far from the country’s domestic waters, targeting highly migra-604

tory species. This generates more variable fuel consumption costs and irregu-605

lar trip durations (e.g., around one to two months). Within the Basque fleet,606

the fishing areas are the Atlantic, Pacific and Indian oceans targeting for tuna607

and tuna-like species,with a few trawlers (OTB) targeting cod in EU waters.608

Between these two fleets manly targeting tuna, there is a clear difference in609

fuel consumption intensity and species selectivity capacity (Tyedmers and610

Parker, 2012; Ruiz et al., 2018). Distant-water purse seiners burn an average611

of 368 litres of fuel per tonne of landings, whereas longliners burn an average612

of 1,070 litres per tonne (Tyedmers and Parker, 2012). However, longliners613

tend to catch bigger fish with a higher economic value, and in certain areas614

they can be more selective, reducing bycatch (avoiding incidental fishing of615

non-targeted species).616

A FRODSS for tuna longliners and trawlers follows the same assumptions617

as large-scale pelagic and demersal fleets, respectively, but considering that618

distant-waters fleets take longer trips, do more fishing events (Table 5) and619

use technology to reduce the effort to searching for fish. This technology620

includes the use of helicopters, bird radar, sonar, or FAD (Miyake et al.,621

2010). Hence, the routing problem could be formulated at a tactical level622

as a combinatorial problem (TSP, mTSP and VRP) to optimize the FAD623

collection, considering the habitat model information to award the routes624

between FADs with high probability of tuna presence (Groba et al., 2015,625

2018). Moreover, and unlike the rest of fleets, better routes can be proposed626

by formulating the problem for multiple vessels instead of for a single vessel.627

Finally, this fleet is the one that can benefit most from the use of a weather628

routing system. This is mainly due to their higher consumption rate (see629

Table 4), and larger travelled distances.630

For this fleet, when targeting for large pelagic species such as tuna by631

purse seiners, the following assumptions can be used in a FRODSS: i) the632

departure and arrival port may be different; ii) fishing grounds are often633

detected through the FAD biomass estimation and other location methods;634
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iii) fishing grounds change constantly, hence the problem should be formu-635

lated in a dynamic environment; iv) bycatch species and choke species need636

to be forecast to avoid quota issues; v) the weather effect on ship perfor-637

mance should be considered; vi) they are affected by fishing management638

constraints, such as FAD use limitation; vii) vessels are limited by their load639

capacity; and viii) fishing events can only occur during daylight.640

3.2. Example of a FRODSS for the distant-water fleet641

A tuna purse seine vessel that belongs to the distant-water fleet was se-642

lected as an example due to the availability of data kindly provided by a643

fishing company operating in the Indian ocean. In this example, two his-644

torical fishing trips are compared with routes proposed by a FRODSS (Fig.645

3). For that purpose, the five layers of a FRODSS (Fig. 1) are developed646

as follows: i) in the environmental layer, the short-term weather forecast647

products come from the Copernicus marine environment monitoring service648

(CMEMS 1); ii) in the ship modelling layer, a Random forest method was649

used to develop a model to estimate the fuel consumption, but there are other650

approaches (Lu et al., 2015; Bal Beşikçi et al., 2016; Gkerekos and Lazakis,651

2020)); iii) for the fisheries layer, a Naive Bayes classifier was used to es-652

timate the probability of high catches at each FAD; iv) in the routing and653

planning layer, a genetic algorithm (GA) was applied (see Subsection 2.3.2)654

to decide the FADs to be visited and the visit order, whereas a dependent655

A* pathfinder (see Subsection 2.3.1) weather routing method was used to656

provide the optimal path between two buoys to be visited, as advised by the657

GA algorithm; and, v) in the decision layer, maps with the optimal route658

were used without interaction by end-user (Fig. 3).659

The fishing routing problem to be solved here consisted of planning a660

single vessel fishing trip that follows an exclusive FAD fishing strategy. The661

objective function used in this example was the relationship between the fuel-662

oil consumption (FOC) and the probability of catches (FOC/1+P (catches)).663

Therefore, the aim of the problem was to find the minimum cost tour starting664

and ending at a fishing port, which intercepts n targets (i.e., FADs), which665

are constantly moving due to the weather conditions. The number of targets,666

n, will be the same as the historical fishing sets, and each FAD have a fishing667

time window associated, i.e., fishing only occurs during the day, although668

1http://marine.coper nicus.eu/
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routing also occurs overnight.669

(a) Example 1 (b) Example 2

Figure 3: Comparison between two historical fishing routes and the ones proposed by a
FRODSS. The dots represent the available FADs, and the colour indicates if there is a
forecast of high probability of high catches (green) or low catches (red). The grey line
represents the historical route, and the blue lines crosses the sets conducted, whereas the
black line indicates the proposed route, and the dots the visited FADs.

The first example shows that the historical and algorithm proposed fishing670

areas differ, since the historical route goes to the west, and the proposed route671

to the south (Fig. 3a). This highlights that early decision-making during the672

trip can be decisive to reduce fuel consumption. In the second example673

(Fig. 3b), both routes propose fishing in more similar areas. However, the674

proposed route fish the FADs closer to the port, while the historical route675

travels further to find the tuna. In both examples, the reduction in fuel and676

time at sea is significant using the FRODSSs, showing their high potential.677

These differences in the two examples seem to be driven by shorter distances678

travelled, and because of improve use of night-time for routing. Still the679

comparison is not fully equitable due to some assumptions and modelling680

carried out.681

4. Conclusions and future directions682

This study shows that there is a gap in the application of route and683

planning optimization decision systems in fisheries. Most of the existing684
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technology required to develop a FRODSS for a smart fishing strategy is685

currently available. However, further research is needed to meet the fishing686

vessel needs, and bear in mind their particularities. For example, available687

algorithms and objective functions need to consider the trade-offs between688

the classical objectives and fishing particularities. Data availability is an-689

other issue to be faced. Although the emergence of new data acquisition690

technologies is reaching to fisheries, their implementation and availability is691

unequal among the different fishing fleets. Some reasons are the upfront costs692

and insufficient access to capital for small-medium fishing vessels, and the693

lack of trust to share data by the industry. Therefore, another key field for694

improvement would be to enhance the trust and collaboration between the695

research community and fishing industry, to reduce reluctance to join in with696

the development and testing of FRODSS.697

As this work suggests, dozens of fishing gears could be addressed with698

four optimization strategies based on their similarities. The fishing-related699

technology available to develop a FRODSS will be different in each group.700

The distant-water fleets group can optimize their operations by integrating701

multiple sources of data with improved species distribution, and/or with702

echo-sounder buoys, estimating the amount of fish and its type to enhance703

their efficiency. The large-scale demersal fleet can benefit from species dis-704

tribution forecasting when selecting the optimal fishing areas. This selection705

should be based on the target species prediction, but also avoiding areas706

where the presence of non-desired species could be high (due to low mar-707

ket value or lack of quotas). The group of large-scale pelagic vessels using708

active gears can benefit from species distribution models that significantly709

reduce searching times, and also, maybe from smart buoys. Finally, the710

group of small-scale coastal fleets using non-active gears is probably the one711

that would get less benefit from a FRODSS. Nevertheless, a mix of species712

distribution models forecasting their target species biomass hotspots in com-713

bination with a market analysis could optimize the relationship between fuel714

consumption and value of landings.715
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network based decision support system for energy efficient ship operations.
Comput. Oper. Res. 66, 393–401. doi:10.1016/j.cor.2015.04.004.

Basurko, O.C., Gabiña, G., Uriondo, Z., 2013. Energy performance of fishing
vessels and potential savings. J. Clean. Prod. 54, 30–40. doi:10.1016/j.
jclepro.2013.05.024.

Battarra, M., Pessoa, A.A., Subramanian, A., Uchoa, E., 2014. Exact al-
gorithms for the traveling salesman problem with draft limits. European
Journal of Operational Research 235, 115–128.

29

http://dx.doi.org/10.1016/j.cor.2015.04.004
http://dx.doi.org/10.1016/j.jclepro.2013.05.024
http://dx.doi.org/10.1016/j.jclepro.2013.05.024


Bell, J.D., Watson, R.A., Ye, Y., 2017. Global fishing capacity and fishing
effort from 1950 to 2012. Fish Fish. 18, 489–505. doi:10.1111/faf.12187.

Boopendranath, M., 2012. Basic principle of fishing gear desing and classifi-
cation.

Bouman, E.A., Lindstad, E., Rialland, A.I., Strømman, A.H., 2017. State-
of-the-art technologies, measures, and potential for reducing ghg emissions
from shipping – a review. Transport. Res. D-Tr. E. 52, 408–421. doi:10.
1016/j.trd.2017.03.022.

Bradley, D., Merrifield, M., Miller, K.M., Lomonico, S., Wilson, J.R., Glea-
son, M.G., 2019. Opportunities to improve fisheries management through
innovative technology and advanced data systems. Fish Fish. 20, 564–583.
doi:10.1111/faf.12361.

Brønmo, G., Christiansen, M., Fagerholt, K., Nygreen, B., 2007. A multi-
start local search heuristic for ship scheduling—a computational study.
Computers & Operations Research 34, 900–917.

Cariou, P., 2011. Is slow steaming a sustainable means of reducing co2
emissions from container shipping? Transport. Res. D-Tr. E. 16, 260–264.
doi:10.1016/j.trd.2010.12.005.
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