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The time-series of daily catch, fishing effort, and mean body mass of the summer fishing seasons of the squid, Loligo gahi, in the
Falkland Islands from 1990 to 2009 are investigated with generalizations of depletion models that account for in-season pulses of re-
cruitment (i.e. open populations) and non-linear relationships between catch as the response variable, and effort and abundance as
the predictor variables. Two main results were found. First, stock dynamics are more complex than assumed by Leslie –Davis or De
Lury depletion models, because in most years, there are several major in-season recruitment pulses, sometimes even larger than the
pre-season pulse, contradicting the basic assumption of a decline in catch rates over the fishing season. Second, the fishery operates
under a regime of hyperstability—catch rates decline slower than abundance—at low stock abundance and hyperdepletion—catch
rates decline faster than abundance—at intermediate and high stock abundance. The hyperdepleted regime is far more prevalent,
a result attributed to the availability of refuges from fishing operations, which may lower the abundance threshold to pass from
the low-abundance hyperstable regime to the higher-abundance hyperdepleted regime.

Keywords: depletion models, Falkland Islands, hyperstability, hyperdepletion, squid stocks, stock assessment.

Introduction
Commercially important squid stocks are characterized by fast
population dynamics, exploitation of mostly single short-lived
cohorts, and spatial dynamics, where the stock recruits into the
feeding grounds from nursery areas and leaves after a few
months to spawn and die (Boyle and Rodhouse, 2005). Given
the fast dynamics, Leslie–Davis or De Lury depletion models
have been used for stock assessments of such stocks (Rosenberg
et al., 1990; Brodziak and Rosenberg, 1993; Agnew et al., 1998;
McAllister et al., 2004; Young et al., 2004; Roa-Ureta and
Arkhipkin, 2007; Xinjun et al., 2008). There are three main
assumptions underlying these depletion models: (i) the popula-
tion is closed, (ii) the response of catch to effort and abundance
is directly proportional, and (iii) the natural mortality rate over
the fishing season is constant. Note that (i) and (ii) imply that
the catch per unit effort (cpue) is a decreasing function of time
over the fishing season, and that (ii) implies that catchability is
constant.

Brodziak and Rosenberg (1993) and McAllister et al. (2004)
have presented extensions to deal with problems with the first
assumption. Brodziak and Rosenberg (1993) allowed for perturba-
tions to a pure depletion process by in-season stock additions—
pulses of increased abundance—relying on additional catch and
effort data from outside the fishing grounds, and applied this
approach to the inshore fishery for Loligo pealei in the Northwest
Atlantic. Brodziak and Rosenberg’s model is a precursor of the
approach to be presented here, although their model relies on add-
itional data and still assumes that assumption (ii) above holds.
McAllister et al. (2004) modelled the Loligo gahi stock in the
Falklands by assuming that (i) and (ii) actually held, but increasing
cpue series are sometimes observed because of sampling variation,
i.e. a true depletion hidden by sampling variability. Roa-Ureta and
Arkhipkin (2007) recognized the limitations of the closed-
population assumption by separately modelling multiple depletion
episodes within the same fishing season of the L. gahi fishery, but
they relied on dividing the season into periods when the closed-
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population assumption held. In this work, I show generalized
depletion models that do not depend on assumptions (i) and
(ii), but instead allow for open populations and a nonlinear rela-
tionship between catch as the response, and effort and abundance
as the predictors. This was necessary to successfully model the
range of dynamic behaviour observed over the twenty summer
fishing seasons (1990–2009) of the L. gahi stock examined.

The meta-analysis by Harley et al. (2001) of commercial cpue
series and scientific survey abundance estimates showed that the
hypothesis of proportionality between cpue and stock abundance
is untenable. These authors found that most fleet-stock systems
chosen for their compilation are hyperstable, whereby cpue
declines slower than abundance when abundance declines, al-
though a sizable minority also exhibited hyperdepletion, with
cpue declining faster than abundance when abundance declines.
The existence of this non-linear relationship between cpue and
abundance has been assumed for some time (Hilborn and
Walters, 1992). The emphasis of previous work has been on one
of the aspects of this alleged non-linearity, namely hyperstability,
because ignoring it when it is present leads to over-optimistic as-
sessment of stocks. The cod (Gadus morhua) off Newfoundland is
a classic example (Walters and Maguire, 1996) and new cases con-
tinue to arise (Erisman et al., 2011). Hyperstability is one of three
possible regimes that also include proportionality and hyperdeple-
tion. Thus, another purpose of this paper is to explore the preva-
lence of all three regimes and the conditions of stock abundance
under which they are present.

Material and methods
Stock assessment model
Table 1 describes all mathematical symbols used in this work. Let C
be the true catch in numbers of a single stock and fishing operation
in a given year. The catch rate is assumed to be the result of two
causes, nominal fishing effort E (hereafter “effort”) and stock
abundance N, dC/dt ¼ f(E,N). In this hypothesis, the fishing op-
eration enters directly through the effort metric. It is further
assumed that effort is an observed predictor of catch, whose
values are known exactly, whereas abundance N is a latent predict-
or of catch. It is possible to expand the latent predictor N(t) to rep-
resent it as the result of estimable parameters and observed
variables. A power relation was assumed for both predictors, abun-
dance and effort. Under these assumptions and switching to dis-
crete time-steps, the Supplementary material shows that a
solution to the catch rate equation above is,

Ct =kEa
t Nb

t e
−M

2

=kEa
t N0e−Mt +

∑t

i=1

Pie
−M t−i( )−e

−M
2

∑t−1
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Cie
−M t−i−1( )

( )b

e
−M

2

(1)

where t . 0, Ct ≥ 0, Et ≥ 0, k . 0, N0 . 0, a . 0, b . 0, M . 0,
and –N0e2M ≤ Pi ≤ +1. This model is a generalized depletion
model — (i) relaxing the closed-population assumption via
in-season perturbations Pi and (ii) relaxing the proportionality as-
sumption on both predictors of catch via a and b — which has
been used as the standard model for formal stock assessment of
the L. gahi stock in the Falkland Islands since 2009. It has been
implemented in the R language (R Development Core Team,

2012), package CatDyn, available through the CRAN repository
(see www.r-project.org). The model has free parameters u ¼ [k a

b N0 M {Pi}]. These parameters belong in two groups. The first
group are the fishing operational parameters, k, a, and b.
Parameter k scales down the determination of catch, so it is
termed “scaling”, and is related to catchability by q(N) ¼ kN1 –b.
Parameter a modulates the output of catch from a certain
amount of effort, so it is termed “effort response”. Its value reflects
the presence of three regimes: effort saturability (a , 1, the fishing
gear catches proportionally less with every additional unit of
effort), effort synergy (a . 1, every additional unit of effort
yields a disproportionate increase in catch), and effort proportion-
ality (a ≈ 1) (Bannerot and Austin, 1983; Quinn and Deriso,
1999). Parameter b is the “abundance response” parameter,
reflecting how fishers perceive fish abundance (hyperstability:
b , 1; hyperdepletion: b . 1).

The second group are the stock abundance parameters, N0, M,
and {Pi}. N0 is the abundance of the stock at the time-step immedi-
ately before the first step of the fishing period. The exp(–M) term
quantifies the natural change as the probability of individual sur-
vival during one time step, Nt/Nt-1. {Pi} is the set of in-season per-
turbations of the depletion process. These are pulses of abundance
that, when positive, reset the depletion process to a higher catch
rate. If {Pi} is the empty set, the model in equation (1) is a pure de-
pletion model, and the stock is a closed population; when {Pi} is not
empty, the model accounts for episodic pulses of abundance, and
the stock is an open population. In this paper, only positive pertur-
bations are considered. These can be waves of immigration into the
fishing grounds or spatial expansions of the fleet’s operation that
make new parts of the stock available to fishing.

The model in equation (1) is a catch model, but under the
assumption that effort is observed exactly, it is easily transformed
into a cpue model by dividing both sides by effort, leading to

CPUEt = kEa−1
t Nb

t e
−M

2 ,

without any statistical consequences except for offsetting the
effort-response parameter by -1. The advantage of formulating
the model for catch is conceptual: in this form, catch is the
random-response variable, and effort and abundance are the fixed-

Table 1. List of symbols used in mathematical notation.

Description Symbol

Expected catch (billions) C
Nominal effort (number of vessels) E
Abundance (billions) N
Time-step (days) t, i
Scaling (1/number of vessels) k
Abundance response a

Effort response b

Natural mortality (1/day) M
Initial abundance (billions) N0

Total initial abundance (billions) A0

Abundance perturbations (billions) P1, P2, P3, P4
Index of perturbation j
Number of time-steps from start of season to

perturbation
s

Catchability (1/number of vessels) q
Observed catch (billions) x

Variance of observed catch (billions2) s2

Adjusted profile likelihood l
Relative spread of estimates Q
Index of model fitted m, n
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predictor variables in a standard non-linear recursive regression
model.

Two probability models are considered for the catch observa-
tions, additive and multiplicative:

xt = Ct + 1t, 1t � Normal 0,s2
( )

xt = Cte
1t , 1t � Normal 0,s2

( ) (2)

where x is the observed catch. For each year of data, both normal
and lognormal models were fitted and it was decided on a
case-by-case basis which was better, using several statistical criteria
(see below). The assumption is that the catch process occurs along
a continuum from additive to multiplicative, so that each year’s
data can be realized closer to one or the other extreme.
Although it might be interesting to estimate the variance param-
eter in the distribution of x, here it is considered a nuisance, elimi-
nated by adopting a modified profile-support function as an
approximation to the exact support function (Pawitan, 2001)

lp u; xt′Et

{ }( )
= T − 2

2
log

∑T

i=1

xt − Ct

( )2

( )
,Normal model

lp u; xt′Et

{ }( )
= T − 2

2
log

∑T

i=1

log(xt) − log Ct( )
( )2

( )
,

Lognormal model

(3)

where Ct is equation (1), the true catch under the process model.

Data and implementation
The best model for each year was identified by estimating the free
parameters u ¼ [k a b N0 M {Pi}] from data consisting of the
daily catch and effort of the fleet fishing for L. gahi in the
summer fishing seasons of 1990–2009 using the CatDyn R
package. A detailed description of the stock’s spatial dynamics
and its fishery can be found in Arkhipkin et al. (2004a, 2008).
The effort data are particularly clean (see Table S1,
Supplementary material) and can be considered accurate and ex-
haustive (Arkhipkin et al., 2008). It was available in two measures:
trawling time per day by the fleet and number of vessels fishing per
day. For statistical adequacy, it is better to use the measure of effort
that has the least chance of having any statistical error in it, which is
the number of vessels. In addition, for a number of years, the
number of vessels shows a tighter relation between catch and
effort (see Figure S1, Supplementary material). Thus, the number
of vessels fishing per day was the measure of nominal effort.

To avoid complications that were considered non-essential, the
whole series was treated as if it were produced by a homogeneous
fleet. This simplification is justified on two grounds: all vessels in
the series are large factory trawlers, with a clear predominance of
Spanish/Falklands vessels, and the measure of effort chosen is
less affected by differences in fishing power. Regarding the first jus-
tification, previous authors (Agnew et al., 1998; McAllister et al.,
2004) working with older and shorter time-series (1987–1996
and 1987–2000, respectively) distinguished fleets with different
catchability based on nationality and size of the vessels. Agnew
et al. (1998) defined seven fleets, while McAllister et al. (2004)
simply modelled the Spanish/Falklands fleet in the mid-size cat-
egory and ignored the other vessels. The present analysis examined
the longest and most updated time-series (1990–2009), in which

the Spanish/Falklands factory trawlers are vastly predominant.
Regarding the second justification, both Agnew et al. (1998) and
McAllister et al. (2004) used hours of trawling as the measure of
effort. The effect of any structure of the fleet, in terms of fishing
power, would be stronger for hours of trawling than for number
of vessels, because the former first requires summation within
vessels and then summation across the fleet. To be correct, the
second summation has to be carried out over homogeneous
hours of trawling; for that reason, there is a need to define fleets
based on some proxy of fishing power. The single summation
over the number of vessels is still affected by different fishing
power, but less so than hours of trawling. This is, incidentally,
further reason to adopt the number of vessels as the preferred
measure of effort.

To transform catch recorded in biomass to catch in numbers,
daily length frequency data and a previously fit length–body
mass power model (Roa-Ureta and Arkhipkin, 2007) were used
to estimate daily mean body mass. The length frequency data
were a sample from 1–3 observers in a fleet that reached a
maximum of 30 vessels operating on a given day, but that now
amounts to only 16 vessels.

In the summer fishing season, the fleet harvests the autumn
spawning cohort (ASC) (Arkhipkin et al., 2008). In principle, it
could be possible to model the entire daily series from 1990 to
2009 simultaneously, assessing all ASCs over the multiannual
period, using a spawning stock–recruitment relationship to
connect years. The study by Agnew et al. (2000) suggests the exist-
ence of a Ricker-type spawning stock–recruitment relationship in
the ASC, but the relationship found was weak, at best.
Furthermore, these authors did not find a useful environmental
correlate of recruitment. Therefore, to assess the stock without
introducing assumptions about interannual population dynamics,
model parameters were estimated separately for each year.

The stock is managed by threshold policies (Quinn et al., 1990;
Mendoza-Meza and da Silveira-Costa, 2011). The management
objective is to leave an escapement biomass of at least 10 000 t
at the end of each fishing season, which can be cut short if the real-
time assessment shows that the stock will cross the threshold
(Arkhipkin et al., 2008). Thus, in this application, it is of interest
to estimate biomass at the end of the season. Biomass was esti-
mated by averaging the mean body mass in the last 7 days of the
season and multiplying this average by the model-predicted
numbers in the stock on the last day of the season. In addition,
total initial abundance was estimated as

Âo = N̂o +
∑

j

P̂je
sjM̂, (4)

where j counts over the perturbations (if any) and sj is the number
of time-steps from the start of the season to the time-step of per-
turbation j. Total initial biomass was estimated as the product of
Â0 and the mean body mass in the first 7 days of the season.

Within each probability model, model selection was first done
using the Akaike Information Criterion, AIC. This was considered
conclusive when the difference between the best and the
second-best models was ≥3 (more conservative than the value
of 2 suggested by Sakamoto et al., 1999). When the models for a
year’s data did not yield a conclusive AIC difference, one model
was selected by inspecting optimization diagnostics, such as gradi-
ents, standard deviation estimates, correlations between estimates,

Open population and hyperstability-hyperdepletion in a Loligo gahi fishery 1405

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article-abstract/69/8/1403/702402 by AZTI FU
N

D
AC

IO
N

 user on 23 M
ay 2019

http://icesjms.oxfordjournals.org/lookup/suppl/doi:10.1093/icesjms/fss110/-/DC1


and by consistency of the escapement biomass estimate with pre-
vious years. This model-selection procedure still selected the two
best models, one from each distribution. The better of these two
was chosen by again considering the optimization diagnostics
listed above, and the consistency of the escapement biomass esti-
mate. Any model where any of the parameter estimates was on a
gradient greater than 1 was discarded.

Considering two distributions and five model processes, up to
10 different versions can be fitted to any given year’s data, which
amounts to potentially 45 paired comparisons of models. To
evaluate the spread of estimates for parameters common to pure
depletion and perturbation models, namely M, N0, k, a, b, and
the derived parameter-escapement biomass, a non-parametric
measure of relative spread of parameter estimates was calculated as

Q =
max ûm − ûn

{ }
med ûm

{ }( )
( )

(5)

where m = n are indices that run through the number of models
fitted on a given year, the numerator is the set of all paired differ-
ences between parameter estimates for a specific common param-
eter, and the denominator is the median of the set of parameter
estimates for the same specific parameter.

Results
Considering all models fitted, including those clearly inadequate,
the Q measure of relative spread shows that the estimate of escape-
ment biomass is usually fairly insensitive to model specification,
although in a few cases (5 out of 40), the estimates spread substan-
tially, with a Q measure reaching as high as 88 (Table 2). Among
the five parameters that are common to all perturbation models,
the widest spread occurs with natural mortality and scaling, and
the narrowest spread with effort response and abundance re-
sponse; the effort-response parameter, in particular, is almost in-
sensitive to model choice (Table 2).

Table 3 shows the AIC values used to identify a best perturb-
ation model for each of the two distribution models. For both dis-
tributions, in 12 out of 20 cases, the AIC was conclusive. In the 8
remaining cases, optimization diagnostics usually pointed to the
model with fewer perturbations. Table 3 also shows the best
model when comparing the best normal and the best lognormal
model using optimization diagnostics and serial consistency of es-
capement biomass. Half of the best models were normal and half
were lognormal. All model processes, from pure depletion to up to
4 perturbations, are selected in at least two years. There remained
four years, for each distribution, when the model selection was still
inconclusive because of AIC ties (1990, 1992, 1998, and 2009).
Further consideration of additional numerical diagnostics, espe-
cially the ability to estimate standard errors and reduce correla-
tions between estimates, identified the best model for those
years. Table S2 in the Supplementary material shows the relative
spread of the four years whose models did not yield conclusive
AIC differences. Table S3 in the Supplementary material shows
quartiles of the correlations between parameter estimates for
each best model. This shows that the degree of parameter aliasing
is low, with most pairwise correlations achieving values that cover
both positive and negative domains, indicating no systematic
trend. Some exceptions are the correlations for neighboring
perturbations (P1 with P2, P2 with P3, and P3 with P4),
which, as expected, are negative. Since one of the purposes of

this work was to study hyperstability and hyperdepletion, it is
interesting to inspect the degree of correlation of the
abundance-response parameter b with all other parameters to
examine whether the regimes of hyperdepletion and hyperstability
could be artifacts of model misspecification. Table S2 shows that b
correlates weakly with other parameters in the model, and that
most of its pairwise correlations cover both positive and negative
domains.

Graphical display of stock assessment results is presented for
summer fishing seasons of 2000, 2004, and 2008, as examples.
The best model for 2000 was a 4-perturbation (4P) model com-
bined with a normal-distribution model, whereas the best model
for 2008 was a pure depletion model (0P) combined with a
lognormal-distribution model (Table 3). The 2004 fishing season
was selected because it was an unusual year with a stepwise in-
crease in observed catch, far away from a single depletion
process. Figures 1–3 are standard prediction plots produced by
the CatDyn R package. They are used to select good initial param-
eter values and to visually examine estimation results.

In 2000 (Figure 1), there were several spikes in catch that could
not be explained by spikes in effort. Positive perturbations were
put at days 38, 68, 111, and 142. Simpler models with fewer pertur-
bations were attempted, and the AIC clearly showed that the 4P
model was best for both observation models: normal and lognormal
(Table 3). The 4P-normal-observation model was preferred over the
4P-lognormal model because the former showed better numerical
optimization diagnostics, namely smaller gradients and smaller
standard errors of estimates. Setting positive perturbations at days
38 and 68 did not completely explain the catch spikes in those
days. Conversely, setting perturbations at days 111 and 142 com-
pletely brought the predictions in line with the observations. On
the day after the first spike, day 39, the catch was much lower than
predicted, creating a large negative residual. Currently, the model
cannot deal with large negative residuals, so they are assumed to
be extreme values. The distribution of residuals overall is symmetric-
al, and the residual scatterplot shows a random scatter with homo-
geneous variance. The Q-Q plot shows good agreement with the
normality hypothesis, except for the large negative residual.

The 2004 fishing season was the most unusual year of the series
(Figure 2). The AIC was conclusive in favour of the 4P model for
the lognormal-distribution model, whereas optimization diagnos-
tics in the four models attempted (Table 3) were equally poor, in-
cluding all models failing to produce a correlation matrix due to a
non-positive-definite Hessian matrix. The estimated initial abun-
dance was the lowest of the series, but there were four perturba-
tions of increasing abundance, until the fourth, 40 days after the
start of the fishing season, that was 22 times higher than initial
abundance. It is clear that, in this year, the Leslie–Davis or De
Lury depletion models cannot possibly account for the observa-
tions. Residual plots of the 4P model show some departures
from distributional assumptions, mostly by the model being
unable to deal with two very low catch days.

In 2008 (Figure 3), there was an overall declining catch over the
fishing season, suggesting 0P process. However, two catch spikes
can be observed at days 62 and 92 in the residual scatterplot.
The AIC of the normal model showed that a 2P model was best,
but the AIC of the lognormal model did not support this model
and pointed to a 0P model (Table 3). When examining the detailed
optimization results, it was noted that the 2P-normal model was
unable to produce a standard error of any parameter estimate,
so the 0P-lognormal model was finally determined to be the best.

1406 R.H. Roa-Ureta
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Table 4 shows the maximum likelihood estimates of squid
abundance parameters. Estimated natural mortality rates are
much lower than the fixed value assumed until now (Roa-Ureta
and Arkhipkin, 2007). However, there are very large standard
errors associated with the estimates. Table 3 also shows that
initial abundance N0 and the perturbations can be estimated
with fairly high precision. This shows that fishing operational
catch-and-effort data alone contain substantial information
about stock abundance. The perturbations constitute an important
part of a year’s abundance, 26% on average; a range of 0% in years
without perturbations to 96% in the unusual 2004 fishing season.

Table 5 shows the maximum likelihood estimates of fishing
operational parameters, scaling (k), effort response (a), and
abundance response (b). Excluding a few exceptions, these para-
meters are estimated with high precision. The scaling parameter

is extremely variable between years, encompassing five orders of
magnitude. The control of catch by effort is more linear than
the control of catch by abundance, because the effort-response
parameter estimate ranged from 0.4 to 1.9, whereas the abundance-
response parameter estimate varied from 0.34 to 10.3. Mean
(and median) a estimate ( �̂a = 1.1) was almost exactly proportion-
al, while mean (and median) b estimate ( �̂b ¼ 4.7) was well in the
hyperdepletion regime (see Figure 1 of Harley et al., 2001). There
were two years with proportionality between catch and effort,
nine years with saturability, and nine years with synergy.
Seventeen years exhibited hyperdepletion, and the three remaining
years, those with the lowest escapement biomass in the series,
showed hyperstability.

Figure 4 shows the post hoc reconstruction of the serial infor-
mation for stock abundance along with estimates from previous

Table 2. Parameter estimates relative spread for all models attempted for all summer seasons of the Loligo gahi fishery in the Falkland
Islands.

Relative spread

Minimum Maximum Natural Initial Effort Abundance
AIC AIC Escapement mortality abundance Scaling response response

Distribution Year difference difference biomass (M) (N0) (k) (a) (b)

Normal 1990 0.03 17.59 2.1 1.77 2.29 26.77 0.10 1.93
1991 0.41 42.86 0.68 2.92 0.78 2.01 0.36 0.43
1992 0 37.43 11.34 .104 12.83 11.90 0.27 1.39
1993 0.79 144.01 88.05 2.72 90.25 .104 0.53 1.21
1994 1.27 16.89 0.38 .104 1.71 .104 0.24 1.24
1995 0.41 4.14 1.02 41.28 15.70 0.03 0.03 0.73
1996 1.14 126.56 3.37 2.59 2.89 2.14 0.90 8.93
1997 3.24 13.03 0.15 1.60 0.16 0.75 0.10 0.10
1998 0.51 10.54 7.2 4.17 1.90 1.49 0.08 2.68
1999 0.06 25.23 0.9 .104 1.32 6.05 0.16 2.69
2000 2.01 90.65 1.27 1.49 1.54 29.62 0.15 0.24
2001 9.13 9.13 0.14 0.28 0.54 1.03 0.29 0.31
2002 0.12 43.82 0.37 3.59 0.34 9.32 0.74 0.32
2003 7.97 374.83 1.96 .104 9.84 .104 0.95 0.77
2004 0.08 0.08 1.14 0.20 0.01 0.18 0.02 0.22
2005 4.86 39.11 14.75 1.15 14.81 7.63 0.50 1.74
2006 0.9 12.54 1.62 1.14 0.78 7.59 0.20 1.79
2007 1.87 1.87 0.1 1.30 0.08 0.18 0.00 0.07
2008 3.94 19.19 1.29 1.93 0.64 0.29 0.03 0.67
2009 0.06 19.1 0.35 6.87 0.38 1.82 0.07 0.42

Lognormal 1990 0.81 13.67 1.02 17.88 2.97 6.19 0.01 1.21
1991 0.53 31.73 0.7 .104 0.77 .104 0.16 1.34
1992 0.43 29.91 1.33 2.81 1.11 .104 0.10 1.09
1993 6.42 80.79 31.13 9.77 35.39 .104 0.08 1.29
1994 0.79 20.98 0.78 1.42 0.74 11.37 0.08 0.71
1995 2.08 2.08 0.01 0.22 0.01 0.00 0.00 0.01
1996 1.19 59 52.89 14.10 7.12 3.78 0.21 14.38
1997 1.98 37.85 3.7 2.15 2.10 1.09 0.06 1.35
1998 0.39 11.93 0.81 1.33 0.89 0.41 0.03 0.53
1999 2 18.86 0.83 0.96 0.72 6.96 0.06 1.95
2000 2.02 89.4 0.97 1.54 1.05 16.39 0.08 0.42
2001 0.85 2.86 0.91 0.72 4.17 0.42 0.05 2.84
2002 2.6 39.19 0.12 1.10 0.11 2.59 0.09 0.27
2003 0 0 0 0 0 0 0 0
2004 3.22 3.22 1.45 0.52 0.04 0.22 0.31 0.42
2005 13.78 13.78 1.59 1.89 1.67 0.17 0.12 1.96
2006 3.74 3.74 1.79 1.55 1.45 1.90 0.04 1.04
2007 0 0 0 0.00 0.00 0.00 0.00 0.00
2008 1.84 3.72 0.57 1.05 0.34 0.79 0.01 0.67
2009 0.31 4.19 0.34 3.48 0.35 1.72 0.05 0.59
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studies for later comparison. Both numbers and biomass of squid
show an earlier short period (three years) of higher abundance, at
close to 100 000 t of escapement biomass, or 5–6 billion squid
recruiting. After that, there is a lower abundance period extending
to the present, centered at about 40 000 t of escapement biomass or
about 2 billion squid recruiting. In this longer period, there were
two years when the escapement biomass hit the management
limit of a minimum of 10 000 t.

Figure 5 shows the observed relationship between four mea-
sures of stock biomass and the abundance-response parameter.
For all four measures, hyperdepletion is only present at the
highest biomass. Conversely, for three measures, hyperstability is
only present at the lowest biomass. The plots also suggest a func-
tional relationship, whose rate of change is steep at low biomass
and levels off at intermediate biomass. The shape of the relation-
ship also shows that the regime of proportionality will be rarely
experienced.

Discussion
Modelling the daily catch dynamics of 20 years of summer fishing
for Loligo gahi in the Falklands showed that perturbations—
in-season pulses of abundance—to a pure depletion process
occur often (in 18 of those years). This can be interpreted in
two ways: there were waves of immigration into the fishing
grounds or the fleet expanded its area of operation, making new
parts of the stock available. In these applications, only the first ex-
planation is plausible because all the assessments carried out
concern a specific area in the southern part of the Falklands con-
tinental shelf (see Figure 2 in Roa-Ureta and Arkhipkin, 2007).
Therefore, the present results indicate that a squid cohort is nor-
mally composed of several successive waves of squid [Boyle and
Rodhouse (2005) termed these “microcohorts”], entering the
fishing grounds at different times during the fishing season. This

is a much more complex situation than assumed by simple deple-
tion models. For example, in 2004 (Figure 2), the daily catch dy-
namics clearly are the result of multiple pulses in abundance,
causing a real in-season, stepwise increase in catch rate. Having
said this, it is also true that, in 15 of the 18 years with perturba-
tions, initial abundance N0 was higher than the sum of all
in-season positive perturbations, indicating that the fishing
season was well timed to harvest squid that had already left the
inshore nursery grounds and had come en masse to the fishing
grounds.

Results of the generalized depletion models can be compared
with results from three previous studies on the same fishery that
employed simple depletion models. Agnew et al. (1998), covering
1987–1996, observed that catch rates in some years did not decline
as expected under the assumption of a closed population. To
provide timely in-season advice for management in those troub-
ling years, they introduced an ad hoc procedure by which catch-
ability estimates from previous years could be used as fixed
values in the troubling years to estimate initial abundance
(Arkhipkin et al., 2008). McAllister et al. (2004), covering 1987–
2000, in a follow-up paper, argued that a real decreasing trend
in catch rates can be masked by spikes in catch rates due to sam-
pling error, making it appear as if the population is open when, in
fact, the population is closed. They developed a Bayesian hierarch-
ical model to deal with these masked decreasing trends by using
catchability information from previous years. All three assump-
tions of the classical depletion model were assumed to hold:
closed population, catch rate proportional to abundance (i.e. con-
stant in-season mean catchability), and fixed natural mortality
rate, whose value is known exactly. Generalized depletion
models improve the assessment by allowing for the more dynam-
ical situation of an open population, via the concept of perturba-
tions to a depletion process, in the form of parameters that can be

Table 3. AIC of all models attempted for all summer seasons of the Loligo gahi fishery in the Falkland Islands, the conclusion from AIC
comparisons, and the model finally selected.

Normal Lognormal

Year 0P 1P 2P 3P 4P
AIC

conclusive 0P 1P 2P 3P 4P
AIC

conclusive Best model

1990 –728.3 –744.7 –745.9 –745.9 –745.0 No 294.7 281.8 281.0 282.9 284.7 No Lognormal 1P
1991 –768.6 –771.2 –769.0 –775.0 –811.4 Yes 249.6 254.0 253.4 247.9 222.2 Yes Lognormal 4P
1992 –755.1 –760.1 –760.1 –792.5 –780.9 Yes 319.4 317.0 319.0 291.4 289.5 No Lognormal 3P
1993 –867.8 –986.8 –1 011.8 –1 011.0 –985.4 No 506.3 453.3 432.9 425.5 439.4 Yes Normal 2P
1994 –856.8 –865.6 –863.6 –872.5 –873.7 No 261.2 260.4 262.4 255.4 241.4 Yes Lognormal 4P
1995 –919.9 –919.5 –915.8 CF CF Yes 134.0 136.0 CF CF NT No Normal 2P
1996 –858.2 –859.3 CF –965.0 –984.7 Yes 521.6 520.4 472.8 462.6 NT Yes Lognormal 3P
1997 NT NT –1 073.4 – 1 070.2 –1 083.2 Yes NT NT 307.6 269.7 271.7 No Normal 4P
1998 –875.8 –885.9 –884.5 –886.4 CF No 352.4 340.4 342.4 342.8 344.8 No Lognormal 1P
1999 –1 069.8 –1 071.9 –1 069.8 –1 095.0 – 1 091.8 Yes 307.3 302.6 304.6 291.3 288.5 No Normal 3P
2000 –610.8 –608.8 –674.1 –669.0 –699.4 Yes 395.8 397.8 – 344.2 308.4 Yes Normal 4P
2001 NT NT CF –958.0 –967.1 Yes NT NT 385.2 387.2 384.3 No Lognormal 4P
2002 NT –934.1 –934.0 –977.8 –951.0 Yes NT 360.3 362.9 323.7 347.8 Yes Normal 3P
2003 –326.1 –365.9 –373.8 CF CF Yes 89.8 CF CF NT NT Yes Lognormal 0P
2004 NT NT NT –358.6 –358.7 No NT NT NT 87.9 84.7 Yes Lognormal 4P
2005 –308.4 –327.6 –342.7 CF –347.5 Yes 46.2 32.4 CF CF NT Yes Normal 4P
2006 –345.4 –356.8 –357.9 –355.9 –354.0 No NT 45.5 41.8 CF NT Yes Normal 1P
2007 NT NT NT –397.3 –395.5 No NT NT NT CF 96.1 Yes Normal 3P
2008 –447.7 –462.9 –466.9 CF CF Yes 81.5 83.4 85.2 CF CF Yes Lognormal 0P
2009 –418.1 –435.1 –436.0 –437.2 –435.1 No 71.8 70.6 69.1 67.6 67.9 No Normal 1P

In bold are the AIC of the best models. NT, not tried; CF, convergence failure.
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estimated from the same data as a simple depletion model. Here,
these perturbations are in-season waves of immigration to the
fishing grounds. This is more realistic because intracohort differ-
ences in the timing of spawning or hatching (Shaw et al., 2004)
or shifts in critical environmental variables (Arkhipkin et al.,
2004b) may produce differences in the timing of recruitment,
leading to the formation of microcohorts (Boyle and Rodhouse,
2005) and ultimately an open population. Roa-Ureta and
Arkhipkin (2007) recognized the existence of in-season increases
in abundance in the 2005 fishing summer season, but they
accounted for it by modelling separate depletion processes.
Generalized depletion models allow for a simultaneous modelling
of the entire season in the presence of increasing trends in abun-
dance. A second advancement of the generalizations is that con-
stant catchability is not assumed. This has been highlighted as
an important component of more realistic stock assessment
models by Harley et al. (2001). The effect is mostly observed in
the assessment results of the earlier years (see Figure 4), where
our estimates tend to be much higher than those of Agnew et al.
(1998) and McAllister et al. (2004) due to the existence of

hyperdepletion at higher stock abundance. A third improvement
is that generalized depletion models use all the available data
from a fishing season, whereas simple depletion models discard
data from time-steps outside a main declining cpue period,
which is defined by the modeller (e.g. McAllister et al., 2004). A
fourth and less crucial improvement of the generalized models is
that natural mortality is a free parameter estimated from the
data. Our estimate is, on average, two orders of magnitude lower
than the fixed value used in previous studies (Rosenberg et al.,
1990; Agnew et al., 1998; McAllister et al., 2004; Roa-Ureta and
Arkhipkin, 2007), although standard errors are very large. This
result is less crucial because it does not have a strong effect on
stock assessment. In fact, a shift in the order of magnitude from
1023 to 1025 means that, instead of 99.1% daily survival, the
stock has a 99.9% daily survival. However, the lower estimates
make more biological sense when the semelparity of the squid re-
productive strategy is considered. A rate in the order of 1023 daily
is consistent with a rate averaged over the lifespan, using Hewitt
and Hoenig’s (2005) empirical formula (Roa-Ureta and
Arkhipkin, 2007), whereas the daily rate estimated here is the

Figure 1. Fishing operational results and model fit diagnostics for the 2000 summer season of the Loligo gahi fishery in the Falkland Islands.
Top-left panel: predicted and observed catch and the timing of perturbations (target symbols). Top-right panel: distribution of residuals.
Bottom-left panel: residual scatterplot. Bottom-right panel: Q-Q residual plot.
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rate experienced exclusively during the fishing season. After the
season, the squid eventually migrate inshore, spawn on the kelp
beds, and die en masse. Thus, most natural mortality is concen-
trated in the last part of the lifespan. It should be expected that
the natural mortality rate during the fishing season would be
much lower than the rate averaged over the lifespan, because the
latter includes the catastrophic rate experienced after spawning.

Generalized depletion models are new stock assessment models
that can be used for squid stocks and probably other stocks.
However, several components of the model need to be improved
by further research in order to make it a more effective general
tool. First, the model requires exhaustive catch-and-effort data
and a measure of effort that is free of statistical error. In many
actual situations, total catch and effort are estimated from obser-
vations of a sample of fishing trips, so both effort and catch
shall be considered random variables. This requires further devel-
opment of the statistical model. Second, the openness of the popu-
lation is modelled by up to four positive perturbations that happen
at exactly one time-step each, whereas actual immigration pulses
each probably occur over a number of time-steps. Third, losses
other than those caused by natural mortality and catch are not
counted. Emigration events may also take place, but modelling

them as negative perturbations incurs the risk of counting the emi-
grated animals twice when estimating escapement biomass. This is
because, once an emigration pulse is defined by a large negative re-
sidual, the emigrated animals have to be kept in a separate
accounting to calculate their natural decline, but then (part of)
these may return to the fishing grounds in a later pulse of abun-
dance, and they would be counted twice when evaluating escape-
ment biomass. Note that minor immigration and emigration
events are accounted for in the random variability of catch.
Fourth, a simplifying assumption applied to the L. gahi fishery
that may require careful attention in other applications is that
the fleet was assumed to be homogeneous in terms of fishing
power. If the fleet is heterogeneous, then the model needs to be
generalized to a multiple-fleet model. In those cases, the model
is of the form

Ct =
∑

f

kf Eaf

t,f N
bf
t (6)

where f is the fleet index. Note also that when expanding the latent
predictor Nt, it might be necessary to make the perturbation para-
meters fleet-dependent. In these more complicated cases, the para-
meters that would be common to all fleets and would, thus, justify

Figure 2. Fishing operational results and model fit diagnostics for the 2004 summer season of the Loligo gahi fishery in the Falkland Islands.
Top-left panel: predicted and observed catch and the timing of perturbations (target symbols). Top-right panel: distribution of residuals.
Bottom-left panel: residual scatterplot. Bottom-right panel: Q-Q residual plot.
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the simultaneous estimation would be initial abundance N0 and
natural mortality M.

Inspection of the estimated and limit escapement biomass
(Figure 4) shows that once the catch stabilized at around 40 000
t (1997–2009) from a previous higher level around 70 000 t
(1990–1996), the limit-escapement biomass became adequate
and the exploitation rate became stable on average; thus, manage-
ment intervention to cut the season short has not been necessary.
Nevertheless, the annual changes in estimated escapement biomass
have not been modest, reaching as much as threefold during the
more stable period starting in 1999. These oscillations may well
be within natural limits, but they may also result from or be amp-
lified by excessive fishing pressure in good years. A study of the
productive capacity of the stock to complement the working limit-
escapement biomass might be useful. Provided a sound method to
estimate productive capacity is defined and the estimate is
re-evaluated with new data every year, it can be used to set a
higher catch limit in good years, so that the exploitation rate
moves within narrower bounds set by the limit-escapement
biomass and a maximum catch.

Agnew et al. (2000) presented evidence for density-dependence
in both cohorts of the L. gahi stock of the Falkland Islands using
spawning stock and recruitment estimates from the De Lury deple-
tion models of Agnew et al. (1998). It is interesting to re-examine
their findings using the estimates of spawning biomass and re-
cruitment presented in this study, both because the number of
observations is higher and because the current estimates come
from improved stock assessment models. The relationship
between escapement biomass and recruitment from this study is
shown in Figure S2 of the Supplementary material. We do not
observe evidence of density-dependence. The relationship
appears linear, with more escapement biomass leading to more re-
cruitment, with high variance. Thus, it seems that the suggestion
of density-dependence by Agnew et al. (2000) is not robust to
departures from the assumptions of simple depletion models, at
least for the case of the ASC.

The L. gahi fishery of the Falkland Islands is hyperdepleted at
high and intermediate abundance levels and is hyperstable at
low abundance levels. Hyperstability has been thought to be
caused by fleets targeting highly aggregated fish, such as spawning

Figure 3. Fishing operational results and model fit diagnostics for the 2008 summer season of the Loligo gahi fishery in the Falkland Islands.
Top-left panel: predicted and observed catch. Top-right panel: distribution of residuals. Bottom-left panel: residual scatterplot. Bottom-right
panel: Q-Q residual plot.
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Table 4. Abundance parameter estimates of selected models, their standard errors (in parentheses), and the timing of events in Julian days (right-hand integer number) for the autumn
spawning cohorts (summer seasons) of the Loligo gahi stock in the Falkland Islands, 1990–2009.

Year Model Distribution 10 25M (day21) N0 (billions) P1 (billions) P2 (billions) P3 (billions) P4 (billions) Besc (t)

1990 1P Lognormal 8.49 (36.14) 4.832 (0.180) 31 0.650 (0.117) 71 – – – 87 646 150
1991 4P Lognormal 1.42 (9.63) 4.619 (NA) 31 0.295 (0.108) 37 0.222 (0.059) 56 0.460 (0.052) 95 0.297 (0.054) 120 90 850 150
1992 3P Lognormal 1.38 (10.13) 3.731 (0.027) 31 0.547 (0.072) 37 0.300 (0.062) 62 0.439 (0.053) 116 – 117 909 151
1993 2P Normal 4.99 (14.46) 1.664 (0.008) 31 0.120 (0.021) 51 0.319 (0.020) 92 – – 78 840 150
1994 4P Lognormal 1.11 (8.85) 2.614 (0.029) 31 0.306 (0.044) 44 0.0005 (0.004) 58 0.223 (0.032) 86 0.204 (0.034) 123 78 663 150
1995 2P Normal 56.12 (733.08) 2.176 (0.709) 31 0.010 (0.068) 32 0.003 (0.015) 121 – – 10 772 150
1996 3P Lognormal 0.23 (2.69) 0.694 (0.439) 31 0.164 (0.019) 45 0.172 (0.020) 121 0.086 (0.021) 140 – 38 114 151
1997 4P Normal 2.18 (9.77) 1.915 (0.031) 31 0.244 (0.050) 64 0.007 (0.033) 74 0.066 (0.035) 89 0.359 (0.024) 118 56 911 150
1998 1P Lognormal 5.11 (88.35) 0.467 (0.262) 31 0.474 (0.086) 45 – – – 10 248 150
1999 3P Normal 0.82 (6.02) 1.850 (0.011) 31 0.129 (0.038) 51 0.065 (0.017) 73 0.144 (0.014) 121 – 55 952 150
2000 4P Normal 4.69 (27.47) 2.714 (0.065) 31 0.283 (0.051) 38 0.173 (0.050) 68 0.436 (0.055) 111 0.717 (0.062) 142 35 259 151
2001 4P Lognormal 0.20 (2.24) 0.670 (0.189) 31 0.259 (0.064) 39 0.029 (0.039) 49 0.277 (0.063) 129 0.116 (0.042) 143 31 569 150
2002 3P Normal 0.07 (1.69) 1.213 (0.033) 31 0.036 (0.018) 90 0.143 (0.020) 122 0.112 (0.011) 144 – 32 238 150
2003 0P Lognormal 1.01 (16.09) 1.972 (0.196) 59 – – – – 62 294 103
2004 4P Lognormal 9.88 (NA) 0.072 (NA) 60 0.036 (NA) 78 0.087 (NA) 84 0.269 (NA) 90 1.573 (NA) 101 23 224 104
2005 4P Normal 33.56 (215.36) 0.787 (NA) 59 0.290 (0.039) 67 0.065 (0.027) 76 0.182 (0.035) 81 0.105 (0.029) 92 28 984 103
2006 1P Normal 31.93 (90.03) 2.150 (0.082) 54 0.268 (0.047) 64 – – – 46 874 103
2007 3P Normal 20.20 (90.15) 2.044 (0.059) 54 0.336 (0.071) 75 0.245 (0.051) 87 0.270 (0.046) 94 – 73 721 103
2008 0P Lognormal 3.06 (30.02) 1.063 (0.209) 54 – – – – 29 711 104
2009 1P Normal 3.62 (19.95) 1.369 (0.014) 54 0.082 (0.010) 69 – – – 45 995 103

Besc is biomass at the end of season; M is the natural mortality rate; 0P, 1P, . . . refer to the number of perturbations in the process model; P1, P2, . . . refer to the magnitude of positive abundance perturbations, if
any.
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aggregations (Hanchet et al., 2005; Erisman et al., 2011). The
degree of stock aggregation may certainly be dependent on the
abundance level, as argued by Hanchet et al. (2005). These
authors noted departures from proportionality when examining
an early period (1986–1992) of low stock abundance and a late
period (1996–2002) of high stock abundance caused by a strong
year class becoming available to the fleets in 1994. Their
Figure 2 shows that in the earlier period of low abundance, cpue
was hyperstable; in their words it “resisted to decrease” even

though the stock was decreasing. Conversely, in the later period
of high abundance, cpue was hyperdepleted, lagging behind the in-
crease in abundance. It is plausible then, in light of our results, to
hypothesize that Hanchet et al. (2005) have found regime shift
from hyperstability to hyperdepletion, caused by corresponding
changes in stock abundance from low to high, similar to our find-
ings in the L. gahi fishery of the Falkland Islands.

Although the relationship between stock abundance and the
presence of hyperdepletion or hyperstability could be a general
characteristic of fisheries, the precise abundance level at which a
hyperstable fishery may become hyperdepleted could be specific
of the conditions under which a fishery operates. In the case of
the L. gahi fishery, the hyperdepleted regime is far more prevalent,
and the abundance level at which the fishery shifts to hyperstability
is low. The seabed at the Beauchene fishing grounds is covered, to a
large degree, by rocky bottoms where trawling gear cannot operate
(see Figure 2 of Roa-Ureta and Arkhipkin, 2007). From anecdotal
reports received by this author, fishing vessel captains believe that
squid often “hide” in these areas, and that this is a fundamental
aspect of the stock’s sustainability. Hilborn and Walters (1992)
have hypothesized that a possible mechanism for hyperdepletion
is the existence of cryptic habitat where the stock makes itself un-
available. Our results show that this hypothesis is incomplete
because the main determinant of the existence of hyperstability
or hyperdepletion is stock abundance, while the presence of
cryptic habitat plays the role of increasing the chance of observing
hyperdepletion by lowering the abundance threshold when a
fishery shifts from the low-abundance hyperstable regime to the
high-abundance hyperdepleted regime. That the regime of abun-
dance response depends on stock abundance in the L. gahi fishery
raises the question whether a regime shift may occur within a
fishing season, given the rapid in-season changes in abundance
observed in some years (see Figure 3). This could certainly
happen, and it would imply that by fixing b at a constant level
during the fishing season, initial abundance would tend to be
underestimated, while escapement biomass would tend to be over-
estimated, which would be a particularly serious concern for years
when initial abundance is close to the above-discussed threshold.

Table 5. Fishing operational parameter estimates of selected models and their standard errors (in parentheses) for the autumn spawning
cohorts of Loligo gahi stock in the Falkland Islands, 1990–2009.

Year Model Distribution 10 – 7k (1/number of vessels) a b

1990 1P Lognormal 8.0 (0.4) 1.796 (0.058) 3.037 (0.097)
1991 4P Lognormal 14.9 (0.2) 0.793 (0.030) 4.851 (0.003)
1992 3P Lognormal 17.7 (0.3) 1.168 (0.024) 4.556 (0.017)
1993 2P Normal 4.4 (0.1) 1.461 (NA) 9.632 (0.043)
1994 4P Lognormal 79.6 (1.2) 1.091 (NA) 4.332 (0.036)
1995 2P Normal 5 647.1 (170.6) 1.244 (0.060) 0.365 (0.274)
1996 3P Lognormal 48 333.3 (164 119.8) 0.840 (0.098) 8.161 (5.102)
1997 4P Normal 75.1 (1.2) 0.854 (NA) 5.416 (0.035)
1998 1P Lognormal 6 424.9 (1 494.0) 1.129 (0.093) 0.751 (0.412)
1999 3P Normal 38.0 (0.7) 0.820 (0.047) 7.674 (0.036)
2000 4P Normal 227.0 (5.2) 1.154 (NA) 4.089 (0.088)
2001 4P Lognormal 11 871.8 (9 328.8) 0.791 (0.075) 4.697 (1.794)
2002 3P Normal 7 520.8 (1 378.5) 0.443 (0.136) 10.326 (0.597)
2003 0P Lognormal 450.6 (111.9) 1.097 (0.095) 3.982 (0.766)
2004 4P Lognormal 10 707.2 (NA) 0.851 (NA) 0.341 (NA)
2005 4P Normal 13 199.1 (NA) 1.108 (NA) 2.220 (NA)
2006 1P Normal 69.3 (3.0) 1.857 (0.054) 3.890 (0.174)
2007 3P Normal 349.1 (8.6) 0.626 (NA) 4.630 (0.052)
2008 0P Lognormal 12 228.2 (4 656.7) 0.951 (0.057) 1.995 (0.822)
2009 1P Normal 371.9 (11.2) 0.897 (NA) 10.739 (0.200)

Figure 4. Estimated history of abundance of the Loligo gahi stock in
the Falkland Islands, 1990–2009. The arrows in the top panel
indicate the years when Agnew et al. (1998) fixed the catchability
estimate because the simple depletion model failed to estimate both
catchability and initial abundance.
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Harley et al. (2001, p. 1765) recommended the incorporation of
abundance response into stock assessment models. In models of
the rapid-fishing operational dynamics, such as the models pre-
sented here, this parameter can be estimated with precision (see
standard errors of b in Table 4), in part because the mathematical
structure of the model allows for easy numerical calculation of gra-
dients and higher-order derivatives of the support function with
respect to b. In the case of population dynamics models, it is
usually understood that introducing non-linear abundance re-
sponse entails introducing b in the relationship between stock
abundance and any indexes from cpue standardization that are
available (e.g. Walters, 2003; Hanchet et al., 2005). However,
abundance response is a general hypothesis for the relationship
between catch rates and stock abundance, so it would be coherent
to include it in any other catch equation of the stock assessment
model. A generalization of the Baranov catch equation allows
direct introduction of abundance response into population dy-
namics stock assessment models. This is shown as follows. In
Baranov’s hypothesis, dC/dt ¼ f(F,N), F is the fishing mortality
rate. The rate of catch that allows for power abundance response is

dC

dt
= FNb (7)

whose solution is

C t( ) = F

b F + M( ) 1 − e− F+M( )bt
( )

Nb
0 (8)

This shows that models without this structural change, and that
rely on Baranov’s hypothesis when the fleet-stock system shows
hyperstability (b , 1), not only artificially inflate the estimation
of abundance, but also result in underestimation of the total mor-
tality rate, F + M. Conversely, when the system exhibits hyperde-
pletion, total mortality is overestimated. Note also that the
abundance response b should be let to vary annually to account
for the possible existence of hyperdepletion and hyperstability
regimes that depend on stock abundance. In the case of our deple-
tion models, fitted separately to each year, the annual variation in
b is implicitly given, whereas in the integrated assessment of mul-
ticohort finfish, it should be made explicit by the modeller.

Supplementary material
Supplementary material is available at the ICESJMS online version
of this paper. It includes an appendix with the derivation of the
stock assessment model as a generalized Leslie–Davis depletion
model, a scatterplot of daily catch vs. daily effort for two measures

Figure 5. Observed relationship between four measures of season biomass and the hyperresponse parameter for the 20 summer seasons of
the Loligo gahi fishery in the Falkland Islands during the period 1990–2009. The curved line is a local polynomial smoother (R’s loess function)
with smoothing parameter ¼1. The vertical lines are the 0, 25, 50, 75, and 100% percentiles of the empirical distribution of the biomass
measure. The horizontal line is the boundary separating the hyperstability and hyperdepletion regimes.
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of effort, an escapement biomass and recruitment plot, a table with
descriptive statistics of effort, and two tables with details of numer-
ical performance by the generalized depletion models.
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