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Abstract

indispensable.
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Background: The detection of genomic copy number alterations (CNA) in cancer based on SNP arrays requires
methods that take into account tumour specific factors such as normal cell contamination and tumour
heterogeneity. A number of tools have been recently developed but their performance needs yet to be thoroughly
assessed. To this aim, a comprehensive model that integrates the factors of normal cell contamination and
intra-tumour heterogeneity and that can be translated to synthetic data on which to perform benchmarks is

Results: We propose such model and implement it in an R package called CnaGen to synthetically generate a wide
range of alterations under different normal cell contamination levels. Six recently published methods for CNA and
loss of heterozygosity (LOH) detection on tumour samples were assessed on this synthetic data and on a dilution
series of a breast cancer cell-line: ASCAT, GAP, GenoCNA, GPHMM, MixHMM and OncoSNP. We report the recall
rates in terms of normal cell contamination levels and alteration characteristics: length, copy number and LOH state,
as well as the false discovery rate distribution for each copy number under different normal cell contamination

Assessed methods are in general better at detecting alterations with low copy number and under a little normal
cell contamination levels. All methods except GPHMM, which failed to recognize the alteration pattern in the
cell-line samples, provided similar results for the synthetic and cell-line sample sets. MixHMM and GenoCNA are the
poorliest performing methods, while GAP generally performed better. This supports the viability of approaches
other than the common hidden Markov model (HMM)-based.

Conclusions: We devised and implemented a comprehensive model to generate data that simulate tumoural
samples genotyped using SNP arrays. The validity of the model is supported by the similarity of the results obtained
with synthetic and real data. Based on these results and on the software implementation of the methods, we
recommend GAP for advanced users and GPHMM for a fully driven analysis.

Background

Two of the genetic instabilities associated with cancer
are copy number alterations (CNAs) and loss of hetero-
zygosity (LOH) events. Both are distinctive features of
tumoural cells, and their acquisition has been reported
to affect the expression of oncogenes and tumour-
suppressor genes [1]. Hence, the detection and
characterization of both CNAs and LOH in tumoural
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samples is crucial to identify candidate cancer-related
genes, as well as to discriminate cancer types [2] and to
understand tumour initiation and complexity [3].

Single nucleotide polymorphism (SNP) arrays of Illu-
mina [4] and Affymetrix [5] platforms allow screening
for such alterations at high resolution and throughout
the whole genome, providing measures of copy number
changes and allelic ratio. Namely, the log R ratio (LRR)
reflects the total intensity signals for both alleles, and
the B allele frequency (BAF) is the relative proportion of
one of the alleles with respect to the total intensity sig-
nal. Because they provide complementary information,
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both LRR and BAF signals are required for a complete
characterization of copy number changes and allelic
ratio. Yet, although each combination of copy number
and allelic ratio has an expected LRR value and a specific
BAF band pattern, these can be distorted by experimen-
tal probe-specific noise and by autocorrelated [6] and
dye [7] biases, respectively.

In the case of tumour samples, three additional
issues need to be considered. First, tumour genomes
contain numerous altered regions whose copy number
is different from two, making the genotypes in nearly
the whole genome non-diploid. Under this situation
of altered DNA index (i.e., half of the mean copy
number), the LRR baseline level is shifted and needs
to be estimated. Because this estimation affects copy
number assignment [8,9], equally likely results with
different biological interpretations are possible. Sec-
ond, tumour biopsies can be contaminated with nor-
mal cells whose genotypes are mainly diploid. This
causes the LRR and BAF signals to shrink and con-
verge towards those of a diploid state proportionally
to the degree of contamination [10]. Third, tumours
can be composed of subclones, this is, subpopulations
of cells that harbour specific alterations along with
the shared ones, which makes LRR and BAF signals
even more complex [11].

Therefore, inferring relevant information such as
breakpoint location, copy number state and genotype
from tumour samples requires sophisticated mathemat-
ical models and computer programs that take general
and tumour specific factors into account. There are
several methods for automatic CNA and LOH detec-
tion in unpaired tumour samples on SNP arrays. Here
we focus on those available for the Illumina platform,
more abundant than those for Affymetrix: OncoSNP
[9], GenoCNA [12], GPHMM [13], MixHMM [14],
ASCAT [15] and GAP [8] (see Table 1). The first four
are based on hidden Markov models (HMM) whereas
the latter two are based on a segmentation procedure
followed by ploidy and normal cell contamination esti-
mation, which allow correct segment calling. Other

Table 1 Characteristics of the six assessed methods
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methods, namely PSCN [16] and OverUnder [17], are
not considered here, because the former requires
matched non-tumoural samples and the latter is not
available as a stand-alone software. For a comparison
of methods with the Affymetrix platform, we refer to
Rasmussen et al. [18].

HMM-based methods infer the most likely succession
of genotypes (including copy number and allele distribu-
tion) given the LRR and BAF values under the assump-
tion of certain conditions such as the expected LRR
means for each copy number and the population B allele
frequency (PFB) of each SNP. Sample-wide parameters,
such as LRR baseline shift, standard deviation of the
noise in both signals and proportion of normal cells, are
unknown and typically optimized using expectation-
maximization (EM) algorithms. The four aforemen-
tioned HMM-based methods differ on which parameters
are optimized and how the EM is performed, as well as
on the definition of the HMMs, including state
characterization.

GAP is based on pattern recognition of a segmented
and smoothed bi-dimensional profile. The method is
implemented as a three-step workflow: (1) tQN (thre-
sholded quantile normalization) normalization [7] for
symmetrisation of BAF signal; (2) extraction of germline
LOH regions, transformation of BAF into a unimodal
symmetric signal (mBAF), segmentation of LRR and
mBAF signals, and merging of LOH germline regions
breakpoints with segmentation breakpoints; and (3) local
copy number assignment through pattern recognition in
the bi-dimensional LRR-BAF space. ASCAT transforms
BAF into a unimodal symmetric signal, similar to mBAF,
and performs a bivariate segmentation of LRR and the
BAF transformation. Then, ASCAT assigns to each re-
gion the allele copy numbers that better fit the data,
based on the ploidy that maximizes a reliability score.

Previous studies have compared some of these methods
among themselves [9,13] and against non-tumour-specific
methods [12,14], but so far no systematic assessment
of the performance of these recently developed CNA
and LOH detection approaches has been performed.

MixHMM GenoCNA GPHMM OncoSNP ASCAT GAP
User-definable noise levels Yes No No No No Yes
User-definable LRR copy number means Yes No No Yes No Yes
Automatic LRR shift estimation No No Yes Yes Yes Yes
Automatic contamination estimation No Yes Yes Yes Yes Yes
Germline and somatic LOH distinction No No No Yes No Yes
Maximum copy number 5 4 7 8 ? 8
Computation time Low Medium Low High Low Medium
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Therefore, we have developed a comprehensive model
that integrates normal cell contamination and intra-
tumour heterogeneity to synthetically generate data
that mimics tumoural samples on which to perform
benchmarks. Using this synthetic data with a wide
range of alteration characteristics and normal cell con-
tamination levels, and a dilution series of a breast can-
cer cell-line [10], we have compared the performance
of the six currently available software that consider
normal cell contamination and rely on both BAF and
LRR to detect CNAs and LOHs from unpaired sam-
ples on Illumina SNP arrays.

Methods

The model

The model presented here draws from a model
described by Yau et al. [9] that has been extended to in-
tegrate normal cell contamination and tumour hetero-
geneity. Furthermore, with the aim of adapting it to the
generation of realistic tumour-like synthetic data, terms
for known biases, generation restrictions and alteration
variability have been included.

The LRR signal for a locus i is modelled as:

J
Irr; = Z/leurxu. +1+¢

Where J is the number of cell types (one for normal
cells plus /-1 tumour cell types with different copy num-
bers at locus i, Wj; is the proportion of the j-th cell
type,ry,, is the expected LRR value for the copy number
x of the j-th cell type present at locus i, the real number
[ is the sample-wide baseline shift, and ¢ is an autocorre-
lated bias that simulates the background noise due to
biological features that are not corrected for in the de-
sign of the array or in the detection methods.

In the equation above, the cell type proportions are
non-null and sum one, and the value W) is constant
sample-wide given that normal contamination does not
change from probe to probe:

J
Wij S (O, HAZj:lwi’j = 1/\VS, t(Ws,l = Wt,1>
the value r, draws from a Gaussian distribution with a
mean u,, which reflects the expected LRR value for copy

number x, and a standard deviation o,, which can be dif-
ferent for each x:

e~ N (phy, 0x)

Finally, the autocorrelated bias ¢ follows a Box-Jenkins
(i.e. ARMA) model:

ci = ARMA(p, 1),
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The BAF signal for a locus i is modelled as:

Wiz
baf; = == oy,
D1 Wi

Where z;; is the number of B alleles of the j-th cell
type in the locus i out of the total copy number x;;, and
n; is the noise of the BAF signal, modelled as a normal
for heterozygous values, and as a mixture of a half-
normal and a point mass function (0 in M, and 1 in M;)
for homozygous values:

P(ni|bi) = I{bi:O} ”N+ (Ov Ubaf,l.O) + (1 — JT)MO
+ I{b,-:l} T[N* (Ov Ubaf_he) + (1 — JT)MI
+ 1{O<bz<1}N(0a O‘hafiho)

Here, I is the indicator function and 7 is the propor-
tion of BAF values that are forced to take the extreme
homozygous values zero or one. The standard deviation
Opas ho of homozygous values is set as a separate param-
eter from 0y, s, given that it is usually observed to be
lower.

The relationship between x;; =2 and z;;, thus in nor-
mal cells, is described by a binomial distribution:

Zi1 = B(xi.l ) Pi)

where p; is the population B allele frequency (PFB) for
the SNP captured by the i-th probe. In turn, tumour
cells will necessarily be homozygous for a locus i if nor-
mal cells are homozygous. On the other hand, if normal
cells are heterozygous, the number of B alleles z is
bound by x:

zZi1 € {O,xi‘l} — VJ(ZIJ = xi‘l)j S {1 .. ]}
zip=1— Vj(O <z < xiJ)j e{l..J}

Additionally, there is a coherence restriction that
applies to SNPs belonging to the same region. The
number of B alleles of a SNP ¢ should be the same to
the number of B or A alleles of any other SNP s
within the same region:

Vs, t(ztlj € {zs,,»,xs,,» - zs,,»})j e{1..J}

The reason is that different alteration events yield cer-
tain possible genotype combinations. For example, given
a diploid genotype AB, a CN4 (i.e. copy number 4)
AABB genotype would not be coherent with a triplica-
tion of one of the alleles, but AAAB and ABBB would.

CnaGen

We implemented the described model as an R package
whose purpose is the generation of synthetic SNP geno-
typing data. The software, named CnaGen, is available at
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http://web.bioinformatics.cicbiogune.es/cnagen and has
fully customizable parameters as detailed below.

CnaGen allows to generate a broad range of region
types combining different copy numbers, presence or
not of somatic or germline LOH and spanning different
number of SNPs per region. Furthermore, regions with
intra-tumour complexity can also be generated establish-
ing the copy number per subclone and the proportion of
the major subclone. Regions can be combined in sam-
ples by establishing the region types to be present and
the number of occurrences of each region type, and by
defining the degree of normal cell contamination per
sample. Other parameters, such as those defining LRR
baseline shift, autocorrelated bias, expected LRR per
copy number and noises in the LRR and BAF signals,
are also user-definable.

As an alternative to fully specifying region characteris-
tics, the user can provide a scaffold that contains them
(length, copy number, allelic ratio and presence of germ-
line LOH). Such scaffold, which implicitly holds the dis-
tribution of genomic rearrangements, may be obtained
from previous experiments, so we regard this alterna-
tively generated data as hybrid between synthetic and
real. In this scenario, additional user-definable genome-
wide properties are: long-distance genomic waves and
overall level of intra-tumour complexity.

The following options to establish PFBs are available
in CnaGen: (i) sampling from B allele frequencies in
Caucasian populations of SNPs in the Illumina
Human660W-Quad array; (ii) sampling from a uniform
distribution; (iii) a constant p;=0.5, which maximizes
genotype information; (iv) any other constant p; (v) and
a three-peak distribution at 0, 0.5 and 1, which approxi-
mates PFBs in the human genome.

Generation of synthetic samples

In order to assess the performance of each method
under different conditions, we generated synthetic SNP
genotyping sample sets with CnaGen. The introduced

Page 4 of 12

statistical framework models the data observation
process, which allows the assessment of the factor it
comprises: copy number with the possibility of intra-
tumour heterogeneity, presence of LOH, length of re-
gion and degree of normal cell contamination. Because
the combinatorial space is too large to be explored ex-
haustively, subsets of values for each factor were
selected. To test for the combined effect of number of
copies, presence of LOH and length of alteration, frag-
ments with copy numbers 1, 2, 3, 4 and 5 with and with-
out somatic or germline LOH spanning 10, 20, 40, 80 or
160 SNPs were generated. Although longer aberrations,
which may even comprise whole chromosomal arms, are
typically found in tumoural cells, method performance
does not change significantly beyond the longest consid-
ered length, specially under low normal cell contamin-
ation levels, as shown in the Results section. To test for
the effect of different levels of normal cell contamina-
tions, four percentages (0, 25, 50 or 75%) of non-
tumoural cells were considered.

The latent genomic rearrangement process of
tumorigenesis was recreated in CnaGen by generating
samples that mimic characteristic tumoural alteration
patterns. We chose five typical patterns (Figure 1,
Additional file 1 for the code to generate the sam-
ples): near-diploid (DNA index 1.03, 45.4% CN2
regions), near-triploid (DNA index 1.32, 40.3% CN3
regions), near-tetraploid (DNA index 1.57, 38.3%
CN4 regions), LOH-enriched (DNA index 1.31, 40.1%
LOH regions) and a complex pattern with great intra-
tumour complexity (DNA index 1.39, 47.6% complex
regions). One hundred replicates were generated for
every combination of alteration pattern and considered
contamination level, having each replicate between 205
and 280 fragments that cover the range of considered
copy numbers, lengths and LOH status.

The rest of the parameters were set as follows: the
LRR baseline shifts were drawn from Gaussian distribu-
tions with means established based on the correlation

Near-diploid Near-triploid

Near-tetraploid

Complex LOH-enriched

Log R ratio
Log R ratio
Log R ratio

Log Rratio
LogRratio

B Allele Frequency 8 Allele Frequency B Allele Frequency B Allele Frequency B Allele Frequency

Figure 1 Characteristic tumour alteration patterns. Depiction of five tumoural samples with characteristic alteration patterns. Each circle
represents the mean LRR (y-axis) and BAF (x-axis) values of a specific region. Circle size represents the length of the corresponding region. The
samples present 25% normal cell contamination. For the computation of BAF means, the signal was mirrored along the 0.5 axis and removed
from homozygous SNPs in heterozygous regions. Grey circles are simply a mirror from the computed black circles.
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between DNA index and baseline shift (see "Parameter
relationships” subsection below). In the Box-Jenkins
model, the orders of the autoregressive and moving-
average processes (i.e. p and 1) were selected so that the
resulting autocorrelated noise resembles the genomic
curves found by Diskin et al. [6]. Expected means, gy,
for each copy number x were established as half of those
values specified in [8] and approach those in the models
of the methods evaluated. PFB values were drawn from
those of the SNPs present in the lllumina Human660W-
Quad array in Caucasian populations, and 30% of the
homozygous probes were forced to take a zero or one
value in the BAF signal in order to resemble real data.
Finally, Gaussian noises were set to 0,=0.2 , Op4f 4.=0.3
and 04 ,0=0.15, being the former two similar to those
HER2-positive samples of high quality analyzed by Li
et al. [13]; and the noise for the homozygous SNPs in
the BAF signal was set to half of the noise of the hetero-
zygous SNPs, based on our own observations.

Cell-line

As a complimentary evaluation dataset, we used the di-
lution series of the CRL-2324 breast cancer cell line,
genotyped with Illumina 370k BeadChips by Staaf et al.
[10] where genomic DNA of breast carcinoma cells were
mixed with DNA from lymphoblastoid cells at known
proportions. This dataset has also been used by other
authors [8,9,13] to assess the self-consistency of their
methods.

In this dataset, the BAF and LRR signal noises range
from 0.02 to 0.03 and from 0.18 to 0.25, respectively.
These values are considered good in the case of BAF
and on the limit for a sensitive analysis in the case of
LRR [19]. GC content bias was found to be between
0.016 and 0.042, which is satisfactory [13]. Chromo-
somes 6 and 16 were removed from the analysis due to
long heterozygous deletions in the lymphoblastoid cells
[8,9,13] and sex chromosomes were not included, due to
differences in how they are handled by the assessed
methods.

Preprocessing

Because GAP, GenoCNA and MixHMM do not integrate
GC content biases into their models, the GC reduction
model from the PennCNV package [19] was applied be-
fore running these programs on cell-line data. tQN [7],
which accounts for dye bias, was only applied in GAP,
given that it is part of the method workflow. Similarly,
GenoCNA parameters are already adapted to signal
asymmetry [12], avoiding the need for such norma-
lization. In turn, no preprocessing was applied to the
synthetic data, as it was generated without the known
GC and dye biases, and GPHMM and OncoSNP, which
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do integrate the former, were fed a GC model with con-
stant GC content values.

Assessment

On synthetic data, a region overlapping approach was
taken to define recalls and false discovery rates (FDR).
An altered region is considered to be recalled when a
call with the same copy number overlaps at least half of
the length of such region. Other fractions were consid-
ered, but the difference in the results is small, as most
calls overlap at least a 95% (not shown). In turn, due to
the high density of alterations in the synthetic data, and
tumoural samples in general, calls are likely to span
more than one actual altered region, rendering the FDR
an unsuitable measure for regions. Therefore, we used
an approximation that consists on defining FDR as the
fraction of alterations called with the wrong copy num-
ber. Methods with better breakpoint detection yield
higher FDRs with such approach, so FDR are not com-
parable among methods. However, it is useful because it
provides insight into how wrong calls are distributed
among copy numbers and to what extend methods re-
duce the number of alteration calls as normal cell con-
tamination increases.

On cell-line data, the set of alterations and their
boundaries are unknown, so we evaluated the possibility
of using self-consistency with respect to pure tumour
calls in order to measure performance. However, we
reckon that such measure does not reflect reality if the
best performance is not expected to be good. It was thus
decided to use a gold standard set of alterations, defined
as a manually selected subset of alterations in the pure
tumour sample detected by the best performing method
over synthetic data. While on synthetic data we consid-
ered copy numbers up to 5, in the case of cell-line data,
CNAs with copy number equal or greater than 4 were
grouped [13] because of the limitations of GenoCNA
and the uncertainty in high copy numbers of the gold
standard set.

For the computation of recall rates and FDRs, normal
diploid (i.e. heterozygous copy number 2) fragments
were excluded from all method calls and the reference
region sets in both the synthetic and real data
assessments.

Results and discussion

LRR and BAF patterns in synthetic data

Figure 2 shows the LRR and BAF signals of some of the
generated region types by CnaGen at different contami-
nations levels: a heterozygous deletion (i.e. copy number
1 alteration), a normal diploid region, the various het-
erozygous CNA events up to copy number 5 and two
concrete cases of 2 and 3-subclone CNAs. Specifically,
the subclones in the latter present either homozygous
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Figure 2 Synthetic regions. BAF (left graphs) and LRR (right graphs) signals of some example synthetic regions generated with CnaGen at
different normal cell contamination levels: a heterozygous deletion (first column), a normal diploid region (second column), the various
heterozygous CNA events up to copy number 5 (third to seventh columns) and two concrete cases of 2 and 3-subclone CNAs (last two
columns). Each SNP probe provides a measurement of the proportion of one of the alleles (BAF) and the total intensity coming from the two
alleles (LRR). Additional file 2 contains the same figure with noiseless data, so that BAF subclone bands can be seen clearly.

deletion (25%), allele duplication (50%) or allele triplica- In general, the different copy numbers can easily be
tion (25%). Although allelic ratio is not among the stud-  distinguished on both signals under null contamination,
ied factors, Figure 2 reflects that generated data bears but, as contamination increases, BAF heterozygous
the different imbalances in mind. bands converge towards 0.5 and LRR levels converge
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towards zero (LRR shift is disregarded for the sake of
clarity). Given the same allelic imbalance pattern of the
diploid region and the CNA with double duplication, the
only way to distinguish them is the LRR signal, eviden-
cing the need of these two signals for a correct genotype
inference. The selected copy numbers and subclone pro-
portions for the depicted complex CNAs yield rather
simple band patterns in comparison to most cases. Even
so, their BAF signals contain 4 and 6 heterozygous
bands, which are so close that they blur into a single
wide band even under low normal cell contamination.
Besides, under high contamination levels, similar copy
numbers are undistinguishable on the LRR signal. Only
under unreal conditions of zero probe-specific and auto-
correlated noises would some of these scenarios still be
distinguishable in both signals (see Additional file 2).

Performance on synthetic samples

To determine the effect of the different factors tested in
each method's performance, recall rates were plotted
against the different values tested for copy number and
length (see Figure 3 and Additional file 3). Graphs were
grouped by sample pattern and normal cell contamin-
ation level. Recall of LOH status was assessed by regard-
ing correct calls as those that matched not only copy
number but also LOH status (lack or presence of LOH,
regardless of whether germline or somatic), and similar
graphs were generated under this criterion (Additional
file 4). Methods tested include an updated version of
GAP released in September, 2011 (named "updated
GAP" in the following). See Additional file 5 for specifi-
cations and parameters used on each method.

In general, normal cell contamination works against
recall ability, but ASCAT, GPHMM and OncoSNP seem
to perform better when there is some degree of contam-
ination (Figure 3). In the case of ASCAT, the reason is
that segmentation has low breakpoint sensitivity under
null contamination, because the adequate number of
breakpoints depends on the segmentation goodness of
fit, which is better for lower normal cell contamination
levels. Thus, except at heavy normal cell contamination
levels, ASCAT outputs less breakpoints for a concrete
sample if it contains less normal cells.

Tumoural cells typically present a DNA index greater
than 1, and the expected LRR baseline value decreases
below zero with the decreasing proportion of normal
cells. Therefore, methods that keep the baseline fixed at
zero will tend to assign lower copy numbers than the
real ones under low normal cell contamination levels,
and viceversa. This is the case for GenoCNA and
MixHMM, which tend to make copy number 1, 2 and 3
calls under low, medium and high contamination levels
respectively (Figure 3B). The lack of baseline shift esti-
mation, and thus of ploidy, makes them perform poorly
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under any condition that moves away from near-diploidy
and little contamination. However, although their
performance is similar under little contamination,
GenoCNA improves with respect to MixHMM as con-
tamination increases, because the former does estimate
normal cell contamination, in contrast to the latter. The
rest of the methods estimate both LRR baseline shift and
normal cell contamination, and present similar perform-
ance over the different copy numbers, except for their
exceptional recall rates for copy number 1 alterations
and the fact that they tend to make few copy number 2
calls and prefer to assign regions copy numbers 1 and 3.
GPHMM presents another exception to such trend. It
has the most stable performance over different contam-
ination levels, which is coherent with the results reported
by Li et al. However, such stability and self-consistency
arises from its tendency to make copy number 3 calls, a
preference that is shared with ASCAT. This is visible if
we separate recall rates by copy number and also if we
look at the overall performance by dataset, as they per-
form better over samples with more copy number 3
alterations, specially near-triploid samples.

As expected, recall rates are higher for longer regions
(Additional file 4). At low normal cell contamination
levels, recall rates do not seem to improve much for
regions beyond 160 SNPs in length but, at 75% contam-
ination, regions need to be longer in order to be called
correctly. Yet, given the observed trend in recall rates by
length, we do not expect recall rates to significantly vary
beyond lengths of a few hundred SNPs. The greater dif-
ference is seen on shorter regions, where GAP is more
sensitive than the rest of the methods.

GAP is by far the best performer under the range of
tested conditions and alterations. One of the advantages
of GAP is that it puts breakpoint sensitivity before speci-
ficity. Then, it merges similar segments if necessary. This
way, it is less probable for changes in mean to be missed.
Additionally, ploidy estimation based on the whole seg-
mented data, a feature that GAP shares with ASCAT,
proves to give better results than the expectation maxi-
misation performed by their HMM-based counterparts.
Surprisingly, the updated version of GAP, in addition to
having a worse performance than its older release, has a
clear problem at the pattern recognition step under both
null and high normal cell contamination levels, where
the recognition fails in most of the samples. This is seen
in its graphical output and reflected on the overall recall
performance.

If we regard correct calls as those that match not only
copy number but also LOH status, methods manage to
keep around 90% of the correct calls, with the greatest
recall drop being 13.2% for ASCAT under null contam-
ination (see Additional file 5). Nevertheless, the recalling
behaviour is similar to the case where only copy number
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Figure 3 Recall rates by method, contamination, and alteration copy number and length. (A) Recall rates (y-axis) of each of the assessed
methods, calculated by contamination over each of the 5 synthetic sample sets. Colour code: GAP (orange), updated GAP (golden), ASCAT
(purple), GPHMM (black), OncoSNP (blue), GenoCNA (green), MixHMM (grey). (B) Recall rates (y-axis) of each of the assessed methods, calculated
by contamination and alteration copy number over each of the 5 synthetic sample sets. Colour code: GAP (orange), updated GAP (golden),
ASCAT (purple), GPHMM (black), OncoSNP (blue), GenoCNA (green), MixHMM (grey).

copy humber

is required to consider calls correct. Therefore, LOH sta-
tus recalling is similar to the recalling ability seen in the
overall performance.

Complementary to the recall rates, we investigated
FDRs and how wrong calls are distributed among copy
numbers (see Additional file 6). GPHMM and OncoSNP
tend to call higher copy numbers than the real ones,
whereas MixHMM and GenoCNA clearly do the oppos-
ite. Furthermore, as contamination increases, the calls of
these latter two have a bias towards copy number 3, as
also seen in Figure 3B. The reduction in their FDRs at

higher contamination levels does not mean better speci-
ficity. Instead, it reflects the fact that these methods de-
crease the number of alteration calls, probably due to
the high uncertainty under heavy contamination levels.
When we visualize each method’s calls on one of the
complex-patterned samples at 25% contamination
(Figure 4), we see that MixHMM and GenoCNA have a
bias towards specific copy number, here copy number 2;
that GPHMM, OncoSNP and ASCAT have similar call
sequences, although each of them ascertains some spe-
cific regions; and that GAP is slightly better than the
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rest, specially because it is able to detect more short
regions.

Performance on hybrid samples

In order to assess whether (i) the spatial distribution of
real genomic rearrangements and (i) the inclusion of
long regions result in different method performances
from what is observed on purely synthetic data, we gen-
erated hybrid samples based on scaffolds taken from
GAP's output [8] over three real tumour cell-line sam-
ples: BLC_B1_T17 (near-diploid), L_B1_T24B (high
complexity) and MDA_468 (LOH-rich). Similarly to
their fully synthetic counterparts, the samples were gen-
erated at 0, 25, 50 and 75% normal cell contamination
levels (more details in Additional file 7).

In comparison to the tests on synthetic data, we
observed slightly better performance in GPHMM and
worse in OncoSNP and ASCAT (see Additional file 8).
Nevertheless, GAP remained as the best performer, and
MixHMM and GenoCNA as the worst. Furthermore,
observations made using purely synthetic data on the ef-
fect of alteration pattern, LRR baseline shift and normal
cell contamination also apply.

Performance on cell-line samples

Given its superior and stable performance over synthetic
data, the GAP output on the pure tumour sample was
selected as the gold standard for the performance assess-
ment over the cell-line data. There are additional rea-
sons for the selection of GAP: (i) its ability to generate a
visual output, which aids in the task of manual adjust-
ment, also available, (ii) the fact that it is open source,
which enables manual fine-tuning, and (iii) its confi-
dence scores in the calls. After visual assessment of the
output, calls were filtered to leave only those with max-
imum confidence in a scale from 1 to 4 and a minimum
length of 40 SNPs, the length at which GAP recall rates
under null contamination start to stabilize on synthetic
data (Additional file 4). A total of 261 regions out of the
original 367 were left. Only 12 of them were copy num-
ber 1, so results regarding this copy number were not
expected to be reliable. Grouping recall rates by copy
number and contamination level, we observed that, in
general, methods behave on cell-line data similarly to
synthetic data. Specifically, the samples are near-diploid
with many copy number-neutral LOH regions and copy
number 3 and 4 alterations, so we expected similar
results to those with the synthetic LOH-enriched and
near-triploid samples.

We examined the recall rates at the available contam-
ination levels closer to those in synthetic data: 0%, 21%,
50% and 77% (see Figure 5). Except at 77% contamin-
ation, ASCAT proves to be the best performer together
with GAP and the updated GAP, and its recall rates are
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stable throughout the different copy numbers. The
updated GAP recognizes the pattern under null contam-
ination, although as we saw on synthetic data, this does
not always happen. Additionally, both ASCAT and the
updated GAP fail to recognize the alteration pattern at
77% contamination, an issue also observed with syn-
thetic data, and the old GAP is the only method that still
correctly estimates the LRR shift at such contamination,
a fact that is independent from having selected GAP
as a reference. Despite a general good performance,
OncoSNP has trouble with copy number 3 regions under
null contamination, as it had with the synthetic near-
triploid samples. Cell-line results also confirm that
MixHMM and GenoCNA are unable to correctly recall
most high copy number regions and have a tendency to
call higher copy numbers as contamination increases.
Manually providing the contamination and LRR shift para-
meters improves MixHMM recall rates, but its high sensi-
tivity to changes in intensity result in overfragmented calls
(see Additional file 9). Finally, whereas GPHMM manages
to carry out a rather correct breakpoint detection, it fails
to estimate the LRR baseline shift on all four contamin-
ation levels. Hence, all copy numbers are increased and re-
call rates are minimum except for copy numbers 4 and
higher, given that they are grouped. GPHMM'’s results
stress the importance of correct LRR baseline shift estima-
tion, whether it is made directly, or through ploidy or
DNA index estimation. We wish to note that the baseline
shift can be correctly estimated (see GPHMM paper [13]),
if a PFB [19] with a modified specification is used.

The greater approximation of ASCAT and updated
GAP calls to the GAP reference in comparison to GAP
calls on non-pure samples validates the gold standard
approach we took, based on the results from the best
method over the pure tumour sample.

Parameter relationships
In [8], the reduction of signal that is lost proportionally to
the level of normal cell contamination is modelled as a
separate parameter ¢, the coefficient of contraction. How-
ever, such parameter only makes sense under experimental
variability, given its actual theoretical linear relationship
with normal contamination. As expected, a linear regres-
sion of these two parameters in the samples analyzed by
Popova et al. [8] shows a high correlation (R*=0.8, R*>=0.9
without one outlier) (see Additional file 10), where the co-
efficient of LRR contraction is approximately half of the
level of tumour purity (q=0.49(1-p)). The definition of our
synthetic data automatically generates this correlation.
Given that DNA index is linearly affected by normal
cell contamination, the relationship between baseline
shift and contamination described by Li et al. [13] can
be redefined in terms of DNA index against baseline
shift. Using the breast cancer samples profiled by Popova
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Figure 5 Recall rates of CNAs on cell-line samples. Recall rates (y-axis), by normal cell contaminations and copy number (x-axis), with respect
to a high-confidence subset of CNAs detected by GAP on the cell-line pure tumour sample. Colour code: GAP (orange), updated GAP (golden),
ASCAT (purple) GPHMM (black), OncoSNP (blue), MixHMM (grey), MixHMM with manual parameterization (dashed grey) and GenoCNA (green).
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et al. [8], we compared the DNA index and the baseline
shift obtained by GPHMM [13] and found a high correl-
ation (R®=0.89) (see Additional file 10). The baseline
shift for our synthetic samples was thus established
based on this correlation.

Depending on the estimation of the baseline shift, dif-
ferent and plausible biological solutions may be obtained
for a sample, and it has been stated that alternative
experiments, such as fluorescence in situ hybridization
(FISH), are required in such cases [12-14]. We reckon
that a sensible integration of the aforementioned rela-
tionships into future methods' models can aid on the
restriction of possible solutions. Still, because of the
convolution of tumour subclones, in presence of normal
cell contamination, regions with 2 or more tumour sub-
clones cannot be uniquely genotyped [11] with current
SNP array technology.

Conclusions

The model implemented in the software CnaGen, which
integrates normal cell contamination and intra-tumour
heterogeneity, has proven to generate synthetic samples
that mimic the characteristic BAF and LRR signal pat-
terns of real tumour samples. Supporting this, synthetic,
hybrid and cell-line data reach similar outcomes in the
assessment of the performance of the methods tested in
this work.

When it comes to selecting a method to detect germ-
line copy number variations (CNVs), where the add-
itional tumour-related issues do not apply, some authors
consider that it is better to use several algorithms and
compare data [20], while others consider that this ap-
proach might not be appropriate [21]. Given the results
of the present study, we consider that the safest option
would be to carefully choose a good method that is ad-
equate for the characteristics of the data and knowledge
of the researcher. For example, in our case, GAP is the
best method, outperforming the rest in nearly all situa-
tions, followed by ASCAT and GPHMM, even though
this latter and OncoSNP present a more sustained

performance at heavy contamination levels. Yet, because
the success of a method does not solely depend on per-
formance, but also on the interaction between the user
and the software implementation, GAP and ASCAT may
not be suitable for users without basic programming
skills, who may prefer the easy to use GPHMM. Thus,
bearing in mind performance, parameterization and ease
of use, we recommend GAP for advanced users and
GPHMM for a fully driven analysis.

Additional files

Additional file 1: Code to generate the synthetic samples.

Additional file 2: Synthetic regions without noise. Synthetic BAF (left
graph) and LRR (right graph) signals of some example regions generated
with CnaGen at different contamination levels and without probe-specific
and autocorrelated noises: a heterozygous deletion (first column), a
normal diploid region (second column), the various heterozygous CNA
events up to copy number 5 (third to seventh columns) and two
concrete cases of 2 and 3-subclone CNAs (last two columns). Each SNP
probe provides a measurement of the proportion of one of the alleles
(BAF) and the total intensity coming from the two alleles (LRR).

Additional file 3: Recall rates by method, contamination and
alteration length. Recall rates (y-axis) of each of the assessed methods,
calculated by contamination and alteration length over each of the 5
synthetic sample sets. Colour code: GAP (orange); Colour code: GAP
(orange), updated GAP (golden), ASCAT (purple), GPHMM (black),
OncoSNP (blue), GenoCNA (green), MixHMM (grey).

Additional file 4: Recall rates, considering LOH status, by method,
contamination, and alteration copy number and length. Recall rates
(y-axis) of calls made with correct copy number and LOH status. By: (i)
normal cell contamination (x-axis), (i) contamination and copy number
(x-axis), and (i) contamination and alteration length (x-axis) over each of
the 5 synthetic sample sets. Colour code: GAP (orange), updated GAP
(golden), ASCAT (purple), GRHMM (black), OncoSNP (blue), GenoCNA
(green), MixHMM (grey).

Additional file 5: Method version and parameterization details.
Versions of the methods used in this study and details of
parameterization when the default parameters were not used.
Additionally, details on the PFB and GC content files used as input when
required.

Additional file 6: FDRs on synthetic samples. Overall false discovery
rates on synthetic samples, broken down by normal cell contamination
level and called/real copy number. Cell colour represents the amount of
incorrectly made calls when the predicted copy number (y-axis) is
different from the actual copy number (x-axis). There are no copy



http://www.biomedcentral.com/content/supplementary/1471-2105-13-192-S1.r
http://www.biomedcentral.com/content/supplementary/1471-2105-13-192-S2.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-13-192-S3.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-13-192-S4.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-13-192-S5.doc
http://www.biomedcentral.com/content/supplementary/1471-2105-13-192-S6.pdf

Mosén-Ansorena et al. BMC Bioinformatics 2012, 13:192
http://www.biomedcentral.com/1471-2105/13/192

number 0 regions in the samples, but some methods make copy number
0 calls. The total FDR for a certain method and contamination is
indicated in the lower right corner of each plot, and is the sum of all the
corresponding cell values. Good performance is reflected in the
symmetry and narrowness of the wrong call distribution along the
correct call diagonal. Departure from such symmetry evidences some
kind of bias.

Additional file 7: Generation of hybrid samples.

Additional file 8: Recall rates by method, contamination, and
alteration length. (A) Recall rates (y-axis) of each of the assessed
methods, calculated by contamination over each of the 3 hybrid sample
sets. Colour code: GAP (orange), updated GAP (golden), ASCAT (purple),
GPHMM (black), OncoSNP (blue), GenoCNA (green), MixHMM (grey). (B)
Recall rates (y-axis) of each of the assessed methods, calculated by
contamination and alteration length over each of the 3 hybrid sample
sets. Alteration lengths (y-axis) are grouped into increasingly bigger bins
(10-19 SNPs, 20-39, 40-79, 80-159, 160-319, 320-639, 640-1279 and
from 1280 SNPs on) and each bin is represented by the shorter length
within it. Alterations shorter than 10 SNPs were not assessed. Colour
code: GAP (orange), updated GAP (golden), ASCAT (purple), GPGHMM
(black), OncoSNP (blue), GenoCNA (green), MixHMM (grey).

Additional file 9: Cell-line data and method calls. LRR (top graph)
and BAF (bottom graph) signals for the cell-line sample at 21%
contamination. Chromosomes 6, 16 and X are excluded for the reasons
described in the main text. In the middle, the calls made by the seven
methods, including MixHMM with manually set global parameters (LRR
shift and contamination), and the reference true calls. If any, calls made
with copy numbers higher than 4 are displayed as copy number 4.

Additional file 10: Parameter relationships. Tables and regression
plots that show the relationship between: (i) coefficient of LRR
contraction and degree of normal cell contamination; and (i) DNA index
and baseline shift.
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