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Abstract

Although free living, members of the successful SAR11 group of marine alpha-proteobacteria contain a very small and A+T
rich genome, two features that are typical of mitochondria and related obligate intracellular parasites such as the
Rickettsiales. Previous phylogenetic analyses have suggested that Candidatus Pelagibacter ubique, the first cultured
member of this group, is related to the Rickettsiales+mitochondria clade whereas others disagree with this conclusion. In
order to determine the evolutionary position of the SAR11 group and its relationship to the origin of mitochondria, we have
performed phylogenetic analyses on the concatenation of 24 proteins from 5 mitochondria and 71 proteobacteria. Our
results support that SAR11 group is not the sistergroup of the Rickettsiales+mitochondria clade and confirm that the
position of this group in the alpha-proteobacterial tree is strongly affected by tree reconstruction artefacts due to
compositional bias. As a consequence, genome reduction and bias toward a high A+T content may have evolved
independently in the SAR11 species, which points to a different direction in the quest for the closest relatives to
mitochondria and Rickettsiales. In addition, our analyses raise doubts about the monophyly of the newly proposed
Pelagibacteraceae family.
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Introduction

According to the endosymbiotic theory, mitochondria and

related organelles such as hydrogenosomes and mitosomes arose

from an endosymbiotic bacterium [1,2,3]. Phylogenetic analyses

based on mitochondrial-encoded proteins have well established

that this bacterium was a member of the alpha-proteobacterial

division [4,5], and although the exact position of the mitochon-

drion within the alpha-proteobacteria is still debated [6], most of

the trees published place the mitochondrial ancestor within or as

sister group to the intracellular obligate parasitic Rickettsiales

[7,8,9,10].

Within the alpha-proteobacteria, the SAR11 lineage of free-

living marine organisms has received great attention since its

discovery in the early 1990s for being among the most successful

organisms on the planet [11,12]. Phylogenetic trees based on four

bacterial encoded proteins place Candidatus Pelagibacter ubique,

the first cultured organism of this group, within a cluster of alpha-

proteobacteria that excludes Rhodospirillales and Rickettsiales

[12], whereas another study, based on 16 bacterial/mitochondrial

proteins places this species as sister group of the mitochondria/

Rickettsiales clade [9]. Recently, the controversy has been

revigorated up by four other studies, published almost simulta-

neously, that support alternative placements for the SAR11 group:

Thrash et al. [13] and Georgiades et al. [14], who conclude that the

SAR11 group belongs to the mitochondria/Rickettsiales clade,

and Brindefalk et al. [15] and Viklund et al. [16], who argue that

these two groups are not related.

From the four studies, only Thrash et al [13] include more

representatives of the SAR11 group other than Ca. Pelagibacter

ubique in analyses based on several genes, the others including

only this species to represent the whole group. Moreover,

Brindefalk et al [15] and Georgiades et al [14] use a single species

(Reclinomonas americana) to represent mitochondria in their analyses

based on several genes, and Viklund et al [16] does not include this

organelle in their inferences. On the other hand, Thrash et al [13]

and Georgiades et al [14] did not use sophisticated models of

sequence evolution that take compositional bias into account, as

did Viklund et al [16], and Brindefalk et al [15]. Finally, the

conclusions drawn from some of these studies are derived from

combining modestly supported results [13] or from deciding on

one of the contradictory outcomes obtained (see Figures 1 and

S2A of Viklund et al. 2011).

Therefore, in order to settle the controversy on the position of

the SAR11 group within the alpha-proteobacteria and its relation

to the origin of mitochondria, phylogenetic analyses based on a

broad taxon sampling, including more available members of the

SAR11 group, and using sophisticated models of sequence

evolution are necessary. Here, we have assembled a dataset of

24 evolutionarily conserved orthologous proteins from 5 mito-

chondria, 62 diverse alpha-proteobacteria, including 6 members of

the SAR11 group, and 9 other bacteria as outgroup. Our results
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confirm that the SAR11 group does not belong to, nor is sister

group of, the mitochondria/Rickettsiales clade.

Results and Discussion

Phylogenies based upon nucleotide data
Shared high percentage of A+T in rickettsial and mitochondrial

genomes has been blamed for the difficulties in confidently

identifying the closest relatives to michochondria [8,10]. This

shared nucleotide composition is illustrated in Figure 1A, where the

high proportions of A+T of mitochondrial and rickettsial genomes

are noticeable; the same pattern is also observed in members of the

SAR11 group. Remarkably, in a phylogenetic analysis based on

nucleotide data, the effect of the compositional bias is so great that

the assemblages obtained seem to reflect nucleotide composition

more than evolutionary relationships; for example, the monophyly

of the outgroup not recovered (Supporting Information S1 and S2).

Nucleotide compositional bias is a well documented source of

phylogenetic inference artefacts that, if not taken into account in the

evolutionary model used, may negatively influence tree reconstruc-

tion [17]. The RY coding [18], which consists on grouping purines

(A&G) and pyrimidines (C&T) in two character states (R and Y)

prior to phylogenetic inference, can sometimes reduce the effect of

compositional bias [19,20]. In our case, this approach has a positive

effect on the obtained tree (Supporting Information S3), which looks

more consistent with current ideas for alpha-proteobacterial

phylogeny [21] than the tree built using the four character states;

additionally, it strongly supports the grouping of mitochondria,

rickettsiales and the SAR11 group. This result is in accord with the

conclusions of Williams, Sobral, and Dickerman [9], Thrash et al.

[13] and Geogiades et al. [14].

Phylogenies based upon amino acid data
Biases in nucleotide proportions affect amino acid composition

[22], an effect that is also observed in our dataset (Figure 1B). Yet

the phylogeny obtained with amino acid data is not as biased as the

one obtained with nucleotide data and recovers all major alpha-

proteobacterial groups and the relationships within them using both

Bayesian (Figure 2) and ML inferences (Supporting Information S4).

This is expected given that amino acids generally have more

character states and are therefore less prone to homoplasy than

nucleotides. In the Bayesian tree constructed based on the WAG

matrix for amino acid substitution, mitochondria and Rickettsiales

are not monophyletic nor are any of them are related to the SAR11

group. Interestingly, applied to our dataset, the site heterogeneous

mixture model CAT [23] drastically changes the position of the

SAR11 group, which is now placed within a cluster of alpha-

proteobacteria that excludes Rickettsiales and Rhodospirillales.

Additionally, the sister-group relationship of mitochondria and

Rickettsiales is strongly supported in this case (Figure 2).

Analogous to the RY coding for nucleotides, the Dayhoff coding

in functional categories has been proposed to reduce amino acid

compositional biases [24]. Applied to our dataset, this method

does not have a remarkable effect in the tree based on the WAG

matrix (Figure 3 and Supporting Information S5). However, when

the CAT model is employed on the Dayhoff recoded dataset, an

even more drastic change in the position of the SAR11 group is

observed: all members of the group but one are placed as a

monophyletic assembly in a cluster that excludes Rickettsiales,

Rhodospirillales and Sphingomonadales (Figure 3). Surprisingly,

alpha proteobacterium HIMB59 is not placed within the SAR11

in this case and appears related to the SAR116 group member

Candidatus Puniceispirillum IMCC1322.

Alpha proteobacterium HIMB59 may not be a member of
the SAR11 group

In order to further understand the evolutionary position of alpha

proteobacterim HIMB59 and the effect of the inclusion of this species

on the position of the SAR11 group, we performed phylogenetic

analyses excluding this taxon or having it as the sole representative of

the SAR11 group. As shown in Figure 4, excluding HIMB59 makes

the result from the non recoded and recoded datasets more similar to

each other, specially in the case of the CAT mixture model, where

both datasets place the SAR11 in a cluster that excludes Rickettsiales,

Rhodospirillales and Sphingomonadales. In turn, when only

HIMB59 is included to represent the SAR11 group, this species

Figure 1. Nucleotide and amino acid composition of the
dataset used in this study. A) Bar graph displaying the percentage
of A+T in the concatenation of the nucleotide sequences. B) Reduced
dimensionality plot showing the main principal components of the
global amino acid compositions. Dots are coloured as in Figure 1A. The
group of overlapping dots at the bottom right corner contains the
species with the lowest A+T %. The variances that explain the two first
axes are respectively 92.3% and 6.3%.
doi:10.1371/journal.pone.0030520.g001

The SAR11 Are Not Close Relatives of Mitochondria
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maintains the evolutionary position observed in Figures 2 and 3

under both models and data recodings used (Supporting Information

S6, S7, S8 and S9). This results suggests that HIMB59 may not be a

member of the SAR11 group and that the definition of the family

Pelagibacteraceae, fam. nov. recently proposed by Thrash et al. [13],

needs to be revisited. Indeed, in their analyses, Thrash et al. [13] also

observed some instability of HIMB59, which in some cases branched

with mitochondria.

Taxon sampling and compositional bias affect the
positioning of the SAR11 group and of HIMB59 in
phylogenetic trees

Among the competing alternative positions for the SAR11

group observed in our analyses based on amino acid data, none

supports the conclusions of Williams, Sobral, and Dickerman

[9], Thrash et al. [13] and Geogiades et al. [14], who suggested a

common ancestor of mitochondria and the SAR11 group. This is

also true when using %AT rich or poor outgroups (Supporting

Information S10 and S11). Only the tree based on nucleotide

data points to this direction, implying that the sister group of

mitochondria/Rickettsiales with the SAR11 group may be the

result of a tree reconstruction artefact caused by compositional

bias. Indeed, as we apply methods to correct for compositional

bias such as Dayhoff recoding or use sophisticated models of

evolution that take site-specific compositional heterogeneity into

account such as the CAT model, the SAR11 group gets further

and further away from mitochondria and Rickettsiales and

branch deeper in the alpha-mitochondrial tree. This may

Figure 2. Phylogeny based on 24 mitochondrial/bacterial proteins (6,542 amino acid positions) inferred by Bayesian Inference with
the WAG + F (left) or the CAT mixture (right) model. Numbers indicate posterior probability values. Branches without values are supported by
posterior probabilities of 1.0. The scale bar denotes the estimated number of amino acid substitution per site. See supplementary material for
complete species names and proteins used.
doi:10.1371/journal.pone.0030520.g002
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indicate that the true evolutionary position of the SAR11 group

is within a group of alpha-protebacteria that excludes Rickett-

siales, Rhodospirillales and Sphingomonadales, but that the

shared compositional bias of mitochondrial, Rickettsiales and the

SAR11 sequences causes the SAR11 group be attracted to the

other two groups. This idea is supported by the analyses of

Viklund et al. [16], who pointed to a compositional bias as

responsible for the traditional relationship of Pelagibacter with

Rickettsiales. Similarly, the positioning of HIMB59 within the

SAR11 group may also be caused by an artefact due to shared

amino acid composition between this taxa and the SAR11 group

(see Figure 1B).
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Figure 3. Phylogeny based on 24 mitochondrial/bacterial proteins (6,542 amino acid positions) inferred by Bayesian Inference with
the GTR + F (left) or the CAT mixture (right) model on the Dayhoff recoded dataset. (see Methods for details). Branches without values are
supported by posterior probabilities of 1.0. The scale bar denotes the estimated number of amino acid substitution per site. See supplementary
material for complete species names and proteins used.
doi:10.1371/journal.pone.0030520.g003
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Outlook
The genome of Candidatus Pelagibacter ubique is among the

smallest to replicate independently and has an extremely high

percentage of A+T content [12], two features that are often observed

in obligate intracellular parasites such as Rickettsiales [25], but which

are more surprising in a free-living marine organism [26]. These two

features together with the phylogenetic analyses of Williams, Sobral,

and Dickerman [9] have lead some authors to label Pelagibacter as the

closest free-living outgroup to Rickettsiales [13,27,28], implying that

mitochondria diverged from the alpha-proteobacteria at some time

between the divergence of a marine clade and a strictly intracellular

lineage adapted to various eukaryotes.

The analyses presented here suggest however that the SAR11

group is not specifically related to the Rickettsiales, and that

Figure 4. Phylogeny based on 24 mitochondrial/bacterial proteins (6,542 amino acid positions) inferred by Bayesian Inference with
the WAG/GTR + F (left) or the CAT mixture (right) model on the non recoded and Dayhoff recoded dataset. (see Methods for details).
Branches without values are supported by posterior probabilities of 1.0. When at least one dataset gives posterior probability ,1, both values are
shown, standard coding on the left and Dayhoff coding on the right. The scale bar denotes the estimated number of amino acid substitution per site.
See supplementary material for complete species names and proteins used.
doi:10.1371/journal.pone.0030520.g004
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genome reduction and bias toward a high A+T content have

evolved independently in both lineages. Indeed, it has already

been suggested that a reduction in genome size, which is often

accompanied by an increase in A+T content, may be a selective

advantage in the open ocean where nutrients are scarce [26]. This

may explain the presence of these exceptional parasite-type

features in Pelagibacter and why this species belongs to one of the

most successful groups of organisms in the planet. Additionally,

some features common to all Rickettsiales that are not present in

Pelagibacter and vice versa support the view that those two lineages

are not related. For example, Rickettsiales contain an unusual

histidyl t-RNA synthetase that is not present in Pelagibacter [29],

and Pelagibacter contains a particular type IV secretion system [30],

a 2/2 Hb1 globin [31], a unique glycine activated and a SAM-V

riboswitch [32,33], and a signal recognition particle protein [27]

that are not present in Rickettsiales.

In conclusion, our analyses based on a broad taxon sampling

including several members of the SAR11 group are consistent with

the current view that Rickettsiales are the closest relatives to

mitochondria, but they do not support a close relationship of

Pelagibacter and the SAR11 group to the origin of this clade.

Therefore, if the potential relationship of SAR11 to mitochondria

has been used as an argument to support the search for

mitochondrial related organisms in marine environments [9,13],

the alternative placement of SAR11shown here should also

encourage research focused on how genome reduction evolves in

free-living organisms.

Methods

Dataset construction
Starting from the 67 protein coding genes of the Reclinomonas

americana mitochondrial genome, BLASTP searches were perform-

ed on the 539 complete alpha-, beta- and gamma-proteobacterial

genomes available as of September 2011 in GenBank, on 5 slowly

evolving mitochondrial genomes and on five additionaly SAR11

group genomes retrieved form GenBank (Candidatus Pelagibacter

ubique HTCC 1002, Candidatus Pelagibacter sp HTCC7211 and

alpha proteobacterium HIMB114) and from the JCVI (HIMB5

and HIMB59). All protein sequences with a Blast e-value lower

than 1024 were retrieved. Each set of sequences was aligned at the

amino acid level with Muscle [34], manually refined with ED [35],

and trimmed of unambiguous aligned blocks of positions with

Gblocks [36] with the following parameters: a minimum of 50%

and 75% of sequences identical for a conserved or flanking po-

sition respectively and a maximum of 5 contiguous non conserved

positions and a minimum of 5 positions for a block. Selected blocks

were manually verified and introduced in the dataset if missing

data was responsible for the automatic removal. Nine beta- and

gamma- proteobacteria representing a broad range of %GC

content were selected as outgroup, and 62 proteobacteria were

selected by selecting one species per genera and by removing the

ones that had more than 50% of missing data (Supporting

Information S12). The 24 genes that contained at least three

eukaryotes and that lacked at most 14 of the 76 selected species

were retained for further analyses (Supporting Information S13).

Once orthologous sequences selected with SCaFoS [37], new

alignments were performed with Muscle and trimmed with

Gblocks (same parameters as above) at the protein level. The

corresponding nucleotide sequences were extracted using in house

software, and alignments, including trimmed sites, were matched

to the protein datasets with Revtrans [38] and in house software.

The concatenation of the 24 protein coding genes comprises a

total of 6,542 amino acids and 19,626 nucleotide positions. 7% of

the data is missing (see Supporting Information S12 and S13). The

amino acid composition bias of the taxa in the dataset was

visualized by assembling a 76620 matrix containing the

percentage of each amino acid per species using the NET

program [35]. This matrix is displayed as a two dimensional plot

in a Principal Component Analysis (PCA).

Phylogenetic analyses
The concatenated protein dataset was analyzed by Maximum

Likelihood, with RaxML [39], and Bayesian Inference, with

Phylobayes [40]. The dataset was analyzed at the nucleotide and

amino acid level in both, standard coding (4 or 20 character states

respectively) or as purine/pryrimidine (RY) coding or Dayhoff

coding of amino acid in six functional categories [24]. To allow for

a general-time-reversible (GTR) matrix implemented in RaxML,

the dataset was recoded to four categories instead of six, by

combining aromatic (FYW) and hydrophobic (MVIL) amino acids

and coding the rare cysteine as missing data [41]. For the

Phylobayes analyses, the 6 Dayhoff categories were considered.

RaxML and Phylobayes analyses were performed with the WAG

(for standard amino acid coding) and GTR (for the nucleotides

and Dayhoff4 or Dayhoff6 coding) matrices, gamma distributed

rates across sites (4 discrete categories) and stationary nucleotide or

amino acid frequencies estimated from the dataset (WAG/

GTR+F+C4 model). Phylobayes analyses were also performed

with the CAT mixture model that accounts for site-specific

compositional heterogeneity [23]. See Supporting Information

S14 for details on the Phylobayes analyses (WAG, GTR-Dayhoff6,

CAT, CAT-Dayhoff6). Cross validation analyses as implemented

in Phylobayes 3.3 were performed in order to select the best fitting

model (Supporting Information S15), which was the CAT +C4 for

both, non coded and recoded amino acid data. Posterior

predictive tests for saturation and compositional homogeneity

were also performed and showed that, as expected [42], the CAT

model better estimates saturation (Supporting Information S16)

and the Dayhoff recoded dataset’s heterogeneity is better

accounted for than that of the non recoded dataset for the GTR

matrix but not for the CAT model (Supporting Information S17).

Supporting Information

Supporting Information S1 Phylogeny based on 24
mitochondrial/bacterial protein coding genes inferred
by Maximum Likelihood using GTR+F+C4 model. Values

above branches indicate bootstrap values. The scale bar denotes

the estimated number of nucleotide substitution per site. Bars on

the right represent the A+T percentage and are proportional to

those in Figure 1.

(TIF)

Supporting Information S2 Phylogeny based on 24
mitochondrial/bacterial protein coding genes excluding
the third codon position inferred by Maximum Likeli-
hood using GTR+F+C4 model. Values above branches

indicate bootstrap values. The scale bar denotes the estimated

number of nucleotide substitution per site. Bars on the right

represent the A+T percentage and are proportional to those in

Figure 1.

(TIF)

Supporting Information S3 Phylogeny based on 24
mitochondrial/bacterial protein coding genes inferred
by Maximum Likelihood using the RY coding and the
GTR+F+C4 model. Values above branches indicate bootstrap

values. The scale bar denotes the estimated number of nucleotide
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substitution per site. Bars on the right represent the A+T

percentage and are proportional to those in Figure 1.

(TIF)

Supporting Information S4 Phylogeny based on 24
mitochondrial/bacterial proteins inferred by Maximum
Likelihood using standard amino acid coding and the
WAG+F+C4 model. Values above branches indicate bootstrap

values. The scale bar denotes the estimated number of amino acid

substitution per site.

(TIF)

Supporting Information S5 Phylogeny based on 24
mitochondrial/bacterial proteins inferred by Maximum
Likelihood using the Dayhoff coding of amino acids in
six categories and the GTR+F+C4 model. Values above

branches indicate bootstrap values. The scale bar denotes the

estimated number of amino acid substitution per site.

(TIF)

Supporting Information S6 Phylogeny based on 25
mitochondrial/bacterial proteins inferred by Bayesian
Inference using the WAG+F+C4 model with only HIMB59
to represent the SAR11 group. Values above branches

indicate posterior probabilities values. The scale bar denotes the

estimated number of amino acid substitution per site.

(TIF)

Supporting Information S7 Phylogeny based on 24
mitochondrial/bacterial proteins inferred by Bayesian
Inference using the CAT mixture model with only
HIMB59 to represent the SAR11 group. Values above

branches indicate posterior probabilities. The scale bar denotes the

estimated number of amino acid substitution per site.

(TIF)

Supporting Information S8 Phylogeny based on 24 mito-
chondrial/bacterial proteins inferred by Bayesian Infer-
ence using the Dayhoff recoded dataset and WAG+F+C4
model with only HIMB59 to represent the SAR11 group.
Values above branches indicate posterior probabilities values. The scale

bar denotes the estimated number of amino acid substitution per site.

(TIF)

Supporting Information S9 Phylogeny based on 24
mitochondrial/bacterial proteins inferred by Bayesian
Inference using the Dayhoff recoded dataset and the
CAT mixture model with only HIMB59 to represent the
SAR11 group. Values above branches indicate posterior

probabilities. The scale bar denotes the estimated number of

amino acid substitution per site.

(TIF)

Supporting Information S10 Phylogeny based on 24
mitochondrial/bacterial proteins inferred by Maximum
Likelihood using standard amino acid coding and the
WAG+F+C4 model when a low %AT (left) or high %AT
(right) outgroup is used. Values above branches indicate

bootstrap values. The scale bar denotes the estimated number of

amino acid substitution per site.

(TIF)

Supporting Information S11 Phylogeny based on 24
mitochondrial/bacterial proteins inferred by Maximum
Likelihood using standard amino acid coding and the
GTR+F+C4 model applied on the Dayhoff recoded
datastet when a low %AT (left) or high %AT (right)
outgroup is used. Values above branches indicate bootstrap

values. The scale bar denotes the estimated number of amino acid

substitution per site.

(TIF)

Supporting Information S12 Complete names and dis-
tribution of missing data among the species used.

(DOC)

Supporting Information S13 Protein coding genes used.

(DOC)

Supporting Information S14 Details of the Phylobayes
analyses. For each model and dataset, 2 independent chains

were run and compared to assess convergence by computing the

largest discrepancy across bipartitions (maxdiff). A maxdiff ,0.3 is

indicator of a good run.

(DOC)

Supporting Information S15 Cross validation tests per-
formed as implemented in PhyloBayes 3.3. Mean score

differences and standard deviation to the best fitting model are

shown. Cross validation tests indicate that for both, the non-

recoded and recoded datasets the CAT model is the one that has

the best fit to the data.

(DOC)

Supporting Information S16 Posterior predictive tests
for saturation as implemented in Phylobayes. The

observed and predicted distributions of the saturation index

summarised by their means and variances are indicated for each

combination of dataset and model.

(DOC)

Supporting Information S17 Posterior predictive tests
for compositional homogeneity as implemented in
Phylobayes. The maximum deviation across taxa was calculated

for the original non recoded and recoded datasets. For each

dataset and model, replicates were simulated using the parameters

of 1/100 of the sample points and the mean of the maximum

deviation over the taxa was calculated for all replicates.

(DOC)
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