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6Hellenic Centre for Marine Research, Athens–Sounio, Anavyssos, Attica 19013, Greece
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The impact of the fishing effort exerted by a vessel on a population depends on catchability, which depends on population accessibility
and fishing power. The work investigated whether the variation in fishing power could be the result of the technical characteristics of a
vessel and/or its gear or whether it is a reflection of inter-vessel differences not accounted for by the technical attributes. These inter-
vessel differences could be indicative of a skipper/crew experience effect. To improve understanding of the relationships, landings per
unit effort (lpue) from logbooks and technical information on vessels and gears (collected during interviews) were used to identify
variables that explained variations in fishing power. The analysis was undertaken by applying a combination of generalized additive
models and generalized linear models to data from several European fleets. The study highlights the fact that taking into account
information that is not routinely collected, e.g. length of headline, weight of otter boards, or type of groundrope, will significantly
improve the modelled relationships between lpue and the variables that measure relative fishing power. The magnitude of the
skipper/crew experience effect was weaker than the technical effect of the vessel and/or its gear.
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Introduction
Fishing effort limitation has traditionally been a main tool in
fishery management. It has been applied in an attempt to
prevent the decline in exploited marine populations, often
within the context of mixed fisheries (Beddington and Rettig,
1984). Fishing effort is generally defined as the product of
fishing power (also referred to as fishing capacity and approxi-
mated by technical characteristics) and nominal fishing effort
(also referred to as fishing activity and approximated by the
hours fished; Cunningham and Whitmarsh, 1980). A management
decision in terms of effort limitation needs to take into account
both components and, consequently, requires an accurate estimate
of fishing power. Estimation of fishing power is also critical issue
in the computation of indices for the standardization of abun-
dance derived from landings per unit effort (lpue). It is assumed
that a proportional change in any index of abundance is expected
to represent the same proportional change in stock size (FAO,
1999). However, lpue is in many circumstances unlikely to be

proportional to abundance (Dobby et al., 2008). Standardization
of lpue normally involves the removal of effects such as effort
inputs related to fishing power and/or population accessibility
(Harley et al., 2001; Mahévas et al., 2004; Ye and Dennis, 2009).

The level of fishing power results from the combined effects of
several inputs with different degrees of importance (Pascoe and
Robinson, 1996). Fishing power may be linked with vessel equip-
ment, gear characteristics (technical set-up), skill of the skipper
and crew, spatial population distribution and abundance, environ-
mental conditions, and fishing tactics (characterized as métiers
that are associated directly with the choice of fishing grounds,
targeted species, gear used, and fishing season). As it is difficult
to assess an absolute measure of fishing power, the concept of rela-
tive fishing power is used here. A number of approaches have been
developed to quantify relative fishing power. As an example,
Beverton and Holt (1957) based their method on the relationship
between the catch rate of a vessel (or the whole fleet) and the catch
rate of a standard vessel. Traditionally, linear models have been
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used to estimate fishing power while taking into account spatial
and temporal heterogeneity of fish populations and fishing activity
(Gulland, 1964; Robson, 1966; Gavaris, 1980; Quirijns et al., 2008).
When the residuals of such models indicate that there is evidence
of more complex heterogeneity than can be explained by a simple
spatial and temporal change in the data, it is common either to
include interactions between these effects (Large, 1992; Maunder
and Punt, 2004) or to consider the relative importance of environ-
mental (Gaertner et al., 1999) or economic variables (Kirkley et al.,
1995; Squires and Kirkley, 1999). Given the estimation of relative
fishing power for each vessel in a fleet, identifying the most influ-
ential elements that affect a vessel’s performance is an important
step towards successful fishery management.

In this study, we investigated whether the variation in fishing
power could be linked to the technical characteristics of a vessel
(e.g. length, tonnage, electronic specifications) and its gear (e.g.
type of groundrope or length of headline), or whether it is
instead a reflection of differences among vessels not accounted
for by the technical information. In the latter case, if all technical
factors that could affect fishing power were considered in the analy-
sis, variation in fishing power could be indicative of the presence of
a human (skipper/crew experience/skill) effect. The hypothesis
that a human effect exists is not recent and has been debated in
the literature. At one stage, the so-called fisher effect was con-
sidered as being little more than a myth (Palsson and
Durrenberger, 1982), but Robins et al. (1998) managed to
provide evidence of and quantify an increase in fishing power
that could be linked directly to a degree of fisher experience with
a plotter system. A skipper/crew effect can therefore be detected
when the experience of the skipper and the crew are likely to con-
tribute significantly to the overall fishing power of a vessel. This
skipper/crew experience can sometimes be related to the age of
the skipper and to the length of time the skipper/crew have been
using one boat or have greater experience with one piece of equip-
ment and/or gear, and it assumes that their ability to catch fish
improves with time (Robins et al., 1998; Mahévas et al., 2004).
However, only a few proxy variables may allow one to detect all
the other components of this human effect (including different
fishing methods, varying degrees of knowledge of the ocean and
adaptability to the environment, and alternative short-term har-
vesting strategies) that Squires and Kirkley (1999) grouped and
entitled “unobserved managerial ability”.

The European research project CAFÉ (Reid, 2009) gave us the
opportunity to investigate and understand the relationship
between fishing power and lpue. The analysis was performed
using a combination of generalized additive models (GAMs;
Hastie and Tibshirani, 1990) and generalized linear models
(GLMs; McCullagh and Nelder, 1989), and the approach was
applied to data on seven European fleets (and for one of their
main targeted species). The analyses consisted of four steps:

(i) testing the hypothesis that the variations in fishing power
were linked to spatial and temporal strata corresponding to
common fleet fishing tactics or to the spatial and seasonal
fluctuations in biomass;

(ii) assessing the relative contributions of the skipper/crew
experience effect against technical characteristic effects on a
measure of relative fishing power;

(iii) relating fishing power to technical information on vessels and
gears collected in a dedicated technological survey carried
out around the European coast (Marchal, 2006);

(iv) providing specific and generic conclusions on the
robustness of fishing effort standardization based on the
technical characteristics and comparing the magnitude of
the so-called skipper/crew experience effect and purely tech-
nical factors.

Material and methods
Fishing fleets
Data from seven fleets were available for this analysis (Table 1,
Figure 1). The first (fleet 1) consists of French demersal trawlers
between 12 and 24 m long operating in the Bay of Biscay (ICES
Subdivision VIIIab), during the period 1999–2003. Megrim
(Lepidorhombus spp.), hake (Merluccius merluccius), anglerfish/
monkfish (Lophius spp.), and ling (Molva molva) are targeted
by this fleet, and they land mainly into ports south of
Brittany. The second fleet (fleet 2) consists of demersal French
trawlers between 18 and 26 m long operating in the northwestern
Mediterranean Sea [General Fisheries Commission for the
Mediterranean, GFCM, Geographical Subarea (GSA) 07, Gulf
of Lions] during the period 2000–2006. Hake is one of the
most important demersal target species of the commercial fish-
eries in GFCM–GSA 07, but this fleet also lands many other
species, such as anglerfish, horned octopus (Eledone cirrhosa),
and red mullet (Mullus barbatus). The third fleet (fleet 3) con-
sists of French pelagic trawlers between 16 and 25 m long oper-
ating in the Bay of Biscay during the period 2000–2005. The
fleet targets mainly pelagic species such as European anchovy
(Engraulis encrasicolus), European sea bass (Dicentrarchus
labrax), albacore (Thunnus alalunga), and horse mackerel
(Trachurus trachurus), and lands in different harbours depending
on the fishing grounds being exploited, which are mainly located
in SW France. The fourth fleet (fleet 4) consists of English beam
trawlers .24 m long targeting mainly flatfish (plaice,
Pleuronectes platessa, and sole, Solea solea) in the North Sea
during the period 2000–2006. The English North Sea beam
trawl fleet (≥24 m) fished mainly out of English east coast
ports, mainly Lowestoft. The fifth fleet (fleet 5) consists of
Greek purse-seiners belonging to two fleet segments, 12–24
and 24–40 m, operating in the eastern Mediterranean (Aegean
Sea) over the period 2000–2005. Catches by that fleet are well
mixed, with European anchovy, sardine (Sardina pilchardus),
and horse mackerel the main target species (Maravelias and
Tsitsika, 2008). That case study involved all major purse-seine
fishery ports in the Greek Aegean (Piraeus, Chalkis,
Thessaloniki, Polygyros, Volos, Chania, Heraklion, and
Kalymnos). The sixth fleet (fleet 6) consists of Basque (Spain)
demersal trawlers between 24 and 39 m long fishing in the Bay
of Biscay over the period 1999–2003. The target species of
that fleet include hake, megrim, and anglerfish, which are
landed in the Basque ports of Ondarroa and Pasaia. The final
fleet (fleet 7) is made up of Spanish purse-seiners between 14
and 38 m long fishing in the Bay of Biscay over the period
2000–2005, harvesting mainly pelagic species such as European
anchovy, horse mackerel, jack mackerel (Trachurus mediterra-
neus), and sardine. In addition, fleet 7 shifts its fishing gear in
summer to pole and line, then targets tuna (Thunnus spp.)
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and lands its catches mainly in Guetaria, Ondarroa, Pasaia, and
Santoña (Cantabria).

We estimate the fishing power in relation to the main target
species for each fleet, i.e. hake for fleets 1, 2, and 6, anchovy
for fleets 3, 5, and 7, and plaice for fleet 4. This set of fleets
allowed us to investigate whether pelagic fleets (and demersal
fleets) share common technical characteristics that would
explain the differences in fishing power. Horsepower (hp)
and vessel tonnage (generally grt, gross registered tonnage)
are often used to standardize fishing effort, but we assume
that other technical characteristics (traditionally not measured)
of the vessel (e.g. the date of construction) or its gear
(e.g. length of headline) could be better proxies of relative
fishing power.

Data
Logbook information on fishing effort and catch and technical
information on vessel and gear were extracted from the database
(Eflalo) developed within the TECTAC project (Marchal, 2006).
Greek data (fleet 5) were acquired from the National Statistical
Services of Greece and the Greek Ministry of Mercantile Marine
databases. For several fleets (fleets 1 and 4–7), each fishing
sequence (a logbook entry, the unit of catch observations) was
allocated to a métier (a combination of gear, target species, and
ICES Subdivision fished; Biseau, 1998). Although logbook data
were available for most registered vessels, technical information
traditionally recorded in administrative regulatory orders is only
available for a subset of those vessels. Within the TECTAC
project, additional historical information on technical

Table 1. Fleet characteristics and average summary information from this study.

Fleet Parameter Eflalo Eflalo and Tecvess Eflalo and Tecgear

Fleet 1, French demersal trawl fleet
in the Bay of Biscay

Number of vessels 311 52 38
Number of fishing trips 1 457 692 577
Number of fishing sequences 8 114 1 511 1 078
Average vessel length (m) 17.2 17.31 18.24
Average vessel tonnage (t) 4 756 4 831 5 447
Average hake lpue (kg h21) 0.08 0.1 0.09

Fleet 2, French demersal trawl fleet
in the western Mediterranean
Sea

Number of vessels 28 21 15
Number of fishing trips 12 970 9 059 5 791
Number of fishing sequences 12 970 9 059 5 791
Average vessel length (m) 23.1 22.78 23.15
Average vessel tonnage (t) 89.3 87.62 93.06
Average hake lpue (kg h21) 0.2 0.18 0.2

Fleet 3, French pelagic trawl fleet
in the Bay of Biscay

Number of vessels 55 10 17
Number of fishing trips 965 544 754
Number of fishing sequences 9 128 1 496 2 718
Average vessel length (m) 19.89 19.7 20.4
Average vessel tonnage (t) 6 184 6 063 6 061
Average anchovy lpue (kg h21) 0.011 0.011 0.009

Fleet 4, English demersal beam
trawl fleet in the North Sea

Number of vessels 60 60 60
Number of fishing trips 4 682 4 682 4 682
Number of fishing sequences 10 983 10 983 10 983
Average vessel length (m) 35.2 35.2 35.2
Average vessel tonnage (t) 296.02 296.02 296.02
Average plaice lpue (kg h21) 12.37 12.37 12.37

Fleet 5, Greek purse-seine fleet
in the Aegean Sea

Number of vessels 47 47
Number of fishing trips 2 427 2 427
Number of fishing sequences 2 427 2 427
Average vessel length (m) 20.9 20.9
Average vessel tonnage (t) 51.3 51.3
Average vessel hp 202.9 202.9
Average anchovy catch (kg) 6 153.2 6 153.2

Fleet 6, Spanish Basque demersal
trawlers in the Bay of Biscay

Number of vessels 55 37 16
Number of fishing trips 5 934 5 049 599
Number of fishing sequences 14 806 12 294 1 419
Average vessel length (m) 35.27 35.61
Average vessel tonnage (t) 283.64 298.86
Average vessel hp 827.02 806.97
Average anchovy catch (kg) 0.432 0.435 0.365

Fleet 7, Spanish purse-seine
targeting anchovy in the
Bay of Biscay

Number of vessels 246 (68) 246 (68)
Number of fishing trips 11 670 (576) 11 670 (576)
Number of fishing sequences 11 670 (576) 11 670 (576)
Average vessel length (m) 26.7 (25.8) 26.7 (25.8)
Average vessel tonnage (t) 99.3 (81.8) 99.3 (81.8)
Average vessel hp 457.4 (359.4) 457.4 (359.4)
Average anchovy catch (kg) 2 248 (1 061) 2 248 (1 061)

Eflalo refers to information on catch and effort variables available in fisher logbooks; Tecvess contains data on the fishing vessel technical characteristics;
Tecgear provides fishing gear technical features.

2254 S. Mahévas et al.
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characteristics of vessel and gear were collected through
face-to-face interviews with vessel owners for some of the fleets
in France and Spain (fleets 1–3 and 6). That survey relied on
the acceptance and cooperation of fishers to participate, because
they were asked about past changes made to their vessels.
Greater detail on the data-collection regime is provided by
Marchal (2006). Despite the dedicated effort devoted to collecting
technical data, the Eflalo database did not include technical infor-
mation on vessel or gear for all the fishing trips, at least not system-
atically. To optimize the use of the information, therefore, we
compiled two new datasets, one including the information on
both logbooks and technical aspects of each vessel (Tecvess) and
one on both logbooks and technical aspects of the gear
(Tecgear). Table 1 provides a representation of the vessels
sampled in terms of technical information. The English, Greek,
and Spanish fleets (fleets 4, 5, and 7, respectively) provided
limited information on vessel and gear (Tables 1 and 2). Finally,
no spatial information on catch was available for the
Mediterranean fleets (fleets 2 and 5) or for Spanish purse-seiners
targeting anchovy in the Bay of Biscay (fleet 7), and in the latter
case, information on ICES Subdivision was only available for the
period 2003–2005. A summary of the average values for the phys-
ical characteristics of the fishing vessels is presented in Table 1.
Summaries of logbook data, vessel technical characteristics, and
gear characteristics are provides in Tables 2–4, respectively.

Fishing power model
To account for fishing tactics, individual fishing vessels were ana-
lysed at the smallest scale available from fisher logbooks. Fishing
tactics refer to the type of fishing operation and can be defined
by the characteristics and outcomes of a single haul. The ideal
scheme would be to consider haul-by-haul lpue data, but landings
and effort in logbooks are unfortunately recorded by fishing trip or

by fishing day, so lpue was calculated using species catch by weight,
divided by the fishing time for every set of fishing trips or fishing
days. We assume here that catch is proportional to the product of
fishing effort and population density (Campbell, 2004; Mahévas
et al., 2004). A realistic model for lpue is therefore

lpue = landings

fishing time
= aPEN, (1)

where a denotes the accessibility coefficient of the target popu-
lation, and P describes the fishing power of the vessel or the fleet tar-
geting the population of abundance N, when exerting nominal
fishing effort E. The product aP is known as the catchability. This
model allows for analysis of lpue data per vessel and per fishing
sequence/trip to estimate the relative fishing power of each vessel
within a fleet and to relate differences in individual fishing power
to factors such as technical characteristics and skipper skill.
Multiplicative models have traditionally been used to analyse
fishing power on linear regressed log-transformed lpue data. The
GLM/GAM approach is an extended process because it allows for
an analysis of lpue data with non-normal distributions and
avoids the bias caused by back-transformation (Laurent, 1963).
The key drawbacks of this modelling approach are (i) the possible
confusion between temporal and spatial variations as a result of
population abundance and fishing power changes in the fleet,
and (ii) the possible residual deviation in the temporal effect
when catchability is density-dependent. Vessel lpue was analysed
for each fleet separately using GLMs and GAMs. The approach is
performed in four steps: (i) an exploratory analysis, (ii) an analysis
where we obtained an estimate of the fishing power of individual
vessels, (iii) an analysis where an estimate was made of a vessel’s
technical fishing power, and (iv) an analysis leading to an estimate
of the gear’s technical fishing power (Table 5).

Figure 1. Geographic location of studied fleets per country. The targeted species on which fishing power was assessed is presented in the
legend box.

Human vs. technology-induced variation in catchability for European fishing fleets 2255

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article-abstract/68/10/2252/613445 by AZTI FU
N

D
AC

IO
N

 user on 30 M
ay 2019



Exploratory analysis
The process of model-fitting requires a selection to be made of
the most appropriate error distribution and covariates based on
an exploratory analysis (Maunder and Punt, 2004; Bordalo-
Machado, 2006). Histograms of lpue frequency and simple plots
of the response variable lpue against available explanatory vari-
ables were created so that alternative models could be specified
and alternative formulations derived for each fleet.

Individual vessel fishing power
It was also necessary to estimate the proportion of variability
in lpue associated with the grouped vessel–crew –gear effect

in relation to the fishing tactic (or métier in operation) and
spatio-temporal variation in both abundance and fishing
power (Table 5). This analysis was carried out for the
whole fleet over the period defined above and can be
expressed as

log[E(lpue)]� vessel + area∗ + month + year + métier∗

+ interactions. (2)

The asterisk indicates that the variable was included in the
model when the information was available. This is referred
to here as model 1, the “vessel logbook base” model.

Nested GLMs were fitted to the lpue using an appropriate
error distribution (either normal or gamma distribution), the
choice of which was an outcome of the exploratory analysis.
A log-link was systematically used to preserve the multiplica-
tive nature of the relationship between lpue and the factors
that are a decomposition of catchability. The order of the
variables in the model can have a bearing on the significance
of the factors (Bishop et al., 2008). Primarily, we considered
the vessel effect because it could be an indication of the
importance of the skipper/crew experience combined with
the physical influence of the vessel’s and its gear’s character-
istics. The year effect accounts for potential drift in fishing
power confounded with changes in the abundance of the
target species.

Table 2. Catch and effort variables available in fishers’ logbooks (Eflalo database).

Variable Definition Unit Fleet 1 Fleet 2 Fleet 3 Fleet 4 Fleet 5 Fleet 6 Fleet 7

VE_REF Vessel ID X X X X X X X
FT_REF Trip ID X X X X X X X
GE_UNI Gear unit X X X X X X X
GE_MSZ Gear mesh size mm X X X X X X X
FO_RECT Area (ICES rectangle) X X X X X
FT_YEAR Year of fishing trip X X X X X X X
Month Month of fishing trip 1–12 X X X X X X X
Métier X X X X X
lpue X X X X X X X

Table 3. Fishing vessel technical characteristics (Tecvess database).

Characteristic Definition Value/unit Fleet 1 Fleet 2 Fleet 3 Fleet 4 Fleet 5 Fleet 6 Fleet 7

ve_len Vessel length m X X X X X X X
ve_hp Vessel hp hp X X X X X X X
ve_ton Vessel tonnage grt X X X X X X X
VE_DAA Year of acquisition X X X X
VE_MAT Hull construction

material
Steel (S); aluminium (A); glass-reinforced

plastic (G); wood (W)
X X X X

VE_BUL Bulbous bow Yes/no X X X X
VE_GPS GPS Yes/no X X X
VE_SOU Number of sounders Number X X X
VE_RPM Engine rpm rpm X X X
VE_PRP Variable pitch

propeller
Yes/no X X X X

VE_ROL Number of net
drums

Number X X X X

VE_TCT Bollard pull t X

Table 4. Fishing gear technical characteristics (Tecgear database).

Characteristic Definition Value/unit

TR_WRP1 Number of warps 2 or 3
TR_PAN1 Number of panels

(or N/A if not
trawl)

2, 4, or 6

TR_LHD1 Length of headline m
TR_GRT1 Type of groundrope Diabolo,1; rock-hopper, 2;

chains, 3; metallic spheres, 4;
rubber, 5; plain wire, 6

TR_OBN1 Number of otter
boards

0, 2, or 4

TR_OBW1 Weight of otter
board

kg
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Vessel technical fishing power
The same model as the vessel logbook base model was fitted to the
sample of vessels contained in the Tecvess database (Table 5):

log[E(lpue)] � vessel + area + month + year + métier

+ interactions. (3)

This is referred to here as model 2, the “vessel tecvess base” model.
After removing the vessel variable from the vessel tecvess base

model, we estimated the proportion of variability accounted for
in the lpue associated with vessel characteristics using the
Tecvess dataset. As most of the technical characteristics of the
vessel are correlated, the relative contribution of each feature
was assessed using single-variable models (Mahévas et al., 2004;
Maunder and Punt, 2004), and their goodness of fit was compared
using Akaike’s information criteria (AIC; Akaike, 1974). When a
technical characteristic is a continuous variable, a GAM was pre-
ferred to a GLM, because the latter assumes a linear relationship
in log-space (Wood, 2006). Technical characteristics that indicate
a model fit AIC of the associated single-variable model that was
lower than the AIC of the vessel tecvess base model were included
in model 3 (Table 5), where model 3 is specified as

log[E(lpue)] � g (vessel technical characteristics) + area

+ month + year + métier + interactions. (4)

This is referred to here as model 3, the “technics tecvess base”
model.

We compared the proportion explained by the vessel effect in
the vessel tecvess base model and by all discrete vessel character-
istics in the technics tecvess base model to evaluate the capacity
of vessel characteristics in explaining the differences in vessel
fishing power (Table 5).

Gear technical fishing power
Finally, the same approach was applied to assess the role of gear
characteristics. We fitted model 4 using the Tecgear database
(Table 5):

log[E(lpue)] � vessel + area + month + year + métier

+ interactions. (5)

This is referred to here as model 4, the “vessel tecgear base” model.
Having removed the vessel effect from the vessel tecgear base

model, gear characteristics (if available) were included to estimate
the contribution of the gear characteristics in lpue variability,
similar to the process for the technics tecvess base model (Table 5):

log[E(lpue)] � g(gear technical characteristics) + area + month

+ year + métier + interactions.

(6)

This is referred to here as model 5, the “technics tecgear base”
model.

Again the vessel tecgear base and technics tecgear base models
were used to assess the relative ability of gear technical

Table 5. List of required models and analyses performed at each step of the study.

Modelling step
Model and
(equation) Modelling exercise Purpose of modelling exercise

Individual vessel
fishing power

1. Vessel logbook
base (2)

Fitting vessel logbook base to lpue from
logbook database

To estimate the relative individual fishing power of the
fleet

Vessel technical
fishing power

1. Vessel logbook
base (2)

Fitting vessel tecvess base to lpue from the
Tecvess database

To estimate the relative individual fishing power of the
tecvess sample of vessels for which vessel technical
characteristics are available

2. Vessel tecvess
base (3)

Comparing the relative contribution of
covariables of vessel logbook base and
vessel tecvess base

To assess the bias using the Tecvess sample in the
subsequent modelling steps

3. Technics tecvess
base (4)

Fitting technics tecvess base to lpue from
the Tecvess database

To identify the discriminant vessel technical
characteristics of individual fishing power within the
tecvess sample of vessels

Comparing the goodness of fit of technics
tecvess base and vessel tecvess base

To assess the contribution of vessel technical
characteristics in the individual fishing power within
the tecvess sample of vessels

Gear technical
fishing power

1. Vessel logbook
base (2)

Fitting vessel tecgear base to lpue from the
Tecgear database

To estimate the relative individual fishing power of the
tecgear sample of vessels for which gear technical
characteristics are available

4. Vessel tecgear
base (5)

Comparing the relative contribution of
covariables of the vessel logbook base
and vessel tecvess base

To assess the bias using the tecgear sample in the
following modelling steps

5. Technics tecgear
base (6)

Fitting technics tecgear base to lpue from
the Tecgear database

To identify the discriminant gear technical characteristics
of individual fishing power within the tecgear sample
of vessels

6. Technics tecgear
tecvess base (7)

Comparing the goodness of fit of technics
tecgear base and vessel tecgear base

To assess the contribution of gear technical
characteristics in the individual fishing power within
the tecgear sample of vessels

Comparing the goodness of fit of technics
tecgear base and technics tecgear tecvess
base

To assess the contribution of vessel and gear technical
characteristics in the individual fishing power within
the tecgear sample of vessels
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characteristics to affect fishing power compared with vessel effects
(Table 5). By adding significant vessel characteristic effects from
the technics tecvess base model to explanatory variables of the
technics tecgear base model, we estimated the global contribution
of technical characteristics in fishing power (Table 5):

log[E(lpue)] �g(vessel technical characteristics)
+ f (gear technical characteristics)
+ area + month + year + métier + interactions.

(7)

This we refer to as model 6, the “technics tecvess tecgear base”
model.

Assuming that the vessel effect includes the human component
of fishing power and that the technical component of fishing
power is determined by both gear and vessel characteristics, the
discrepancy in explanatory power of models 4 and 6 was used as
a proxy of the magnitude of the human component (or at least
an upper bound of this effect) in fishing power, the so-called
skipper/crew effect.

The type (continuous/categorical) of each explanatory variable
included in statistical models is driven by the nature of the vari-
able, so all continuous variables were treated as continuous regres-
sors, whereas discrete and non-numerical variables were
considered as categorical factors. For factors, the first modality
defines the reference and is set equal to zero to make parameter
estimates directly interpretable (Venables and Ripley, 2002). In
models 1–6, the year effect takes into account the annual vari-
ations in fishing power of the fleet and any changes in abundance
of the target species. The month effect characterizes seasonal vari-
ations in harvesting practice (Laurec and Le Gall, 1975), but prob-
ably also in fish accessibility. Similarly, area effects describe spatial
variations in abundance, accessibility, and fishing tactics. The
vessel effect quantifies a vessel’s fishing power that may be associ-
ated with skipper/crew skill and vessel and gear characteristics.
The métier effect describes variations in fishing tactics.

The GAM was estimated using the penalized version of
maximum likelihood provided by the generalized cross-validation
method (Wood, 2006). The GLMs and GAMs were assessed for
goodness of fit and were evaluated through an exploration of the
residuals. A comparison of the deviance residuals against the
fitted values presented no systematic pattern, but were normally
distributed (McCullagh and Nelder, 1989; Hastie and Tibshirani,
1990). The analysis of deviance (a measure of discrepancy) relies
on the x2 approximation for differences between deviances in
nested models. To select a parsimonious model, we computed an
AIC for each model (Akaike, 1974). Although a GAM is fitted
using penalized regression splines and a GLM is simply a pure pena-
lized regression model, Wood (2006) showed that the AIC is appro-
priate to compare GAM or GLM nested models. The absolute
magnitude of the AIC value is not interpretable, so we used the
AIC differences [DAIC ¼ AIC (model) 2 min (AIC), where min
(AIC) is computed over all candidate models in the set] to
compare and rank models. Burnham and Anderson (2003)
suggested that studies omit models with a DAIC value of .10.

Results
Exploratory analysis
For each fleet, exploratory analysis was performed using histo-
grams of lpue frequency and simple plots of their relationship

with explanatory variables (not shown). A first step when fitting
GLMs is to select an appropriate error distribution. Histograms
of log-transformed lpue frequency were examined for each series
to select between a gamma and a lognormal distribution by
visual inspection. This selection was also validated using the stan-
dard model checking criteria (Q–Q plots). Most fleets are charac-
terized by evidence of fishing seasonality and annual variations in
averaged lpue. When fishing trips (sequences) are reported in log-
books at the scale of an ICES rectangle, the fishing activity at the
scale of the fleet shows strong spatial patterns with preference
for certain ICES rectangles. Recently, there was an increase in
effort sampling for several fleets, which could have led to
more-accurate estimates for the final few years of the periods
studied. Finally, the métier variable, when available, captured
reasonably well the variance in lpue within the fleet.

Variations in lpue in relation to technical characteristics were
also investigated. There were obvious trends in lpue plotted
against vessel length for fleets 1 and 4–7, for lpue against hp for
fleets 2 and 3, and for lpue against date of acquisition for fleets
1 and 6. Consequently hp, vessel length, grt, and the year of acqui-
sition were identified as potential discriminant variables and tested
for all fleets. A thorough investigation of the technical character-
istics of fleets 1–3 and 6 demonstrated that engine revolutions
per minute (rpm), the presence/the absence of a bulbous bow,
the number of net drums, and the presence/the absence of a vari-
able pitch propeller were highlighted as discriminatory variables.
More specifically, the exploratory analysis showed the relevance
of the hull material variable, and experts proposed that this vari-
able should be linked with bollard pull. Unfortunately, bollard
pull, which is a measure of a vessel’s maximum power (the
zero-speed pulling capability of the boat), was available only for
fleet 2. When we considered electronic equipment (GPS, sonar,
radar), little difference was observed in lpue. Overall, the acqui-
sition of new equipment during the study period affected pelagic
vessels more than demersal trawlers. The length of headline (for
fleets 2, 3, and 6) and the weight of otter boards (for fleets 2
and 6) affected the lpue for a limited number of fleets and in com-
bination should be a good proxy of the volume filtered (i.e. trawl
opening × gauge). On the other hand, the type of groundrope
represented a strong discriminatory variable in all the fleets that
recorded this characteristic.

Individual vessel fishing power
The best fit for the vessel logbook base model 1 includes all the
introduced variables as well as some interaction terms for fleets
1 and 4–6 (Table 6). The plot of the residuals did not show
trends (not shown), and the Q–Q plot indicated that the residuals
were consistent with the assumed error model, except for fleet 3
where outliers caused the observed plot to deviate slightly from
the reference line. For fleet 3 (a pelagic fleet), the assumption of
a linear relationship between lpue and biomass is perhaps inap-
propriate (MacCall, 1990) and leads to slight model misspecifica-
tion. With respect to most fleets, the vessel effect makes the
greatest contribution towards the change in deviance and AIC
(Table 6). The Mediterranean pelagic fleet (fleet 5) distinguished
itself as unique in this regard. For that fleet, the vessel effect
exerted the second biggest contribution towards the observed
variability in the landings (�9%), and the month effect made
the greatest contribution towards the change in deviance and
AIC (Table 6). Indeed, that pelagic fishery is closed at the begin-
ning of the year, so this monthly effect is largely explained by
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high catches after the reopening and a gradual decrease of anchovy
catches from June to November. Subsequently, the significance of
the month effect reflects great seasonality in fishing power.

For most fleets, the year effect does not contribute as much as
other effects. It certainly displays a weak change in the efficiency of
fishing power, probably as a result of the short length of period
over which this study focused (from 5 to 7 years). The only fleet
that contrasts sharply with others is the Spanish demersal fleet
(fleet 6). It is characterized by a high contributing year effect on
the change in AIC, whereas fleet 1, targeting the same population
of hake, shows a slightly positive year effect. Given that stock
assessments and scientific surveys over the study period (1999–
2003) revealed a rather positive trend in hake biomass (ICES,
2006), this negative effect could reflect a decrease in efficiency or
perhaps be masking a change in tactics not evident in the data col-
lected. When several fishing tactics are applied within a fleet, the
métier effect is significant, confirming possible differences in
fishing efficiency caused by the difference in the fishing tactics of

each métier. This was clearly detected for the French fleet operat-
ing in the Bay of Biscay (fleet 1) and for the Basque demersal traw-
lers (fleet 6), but unfortunately it was less significant for Greek
purse-seiners (fleet 5). The interactions of vessel effect with
month or métier (depending on fleet) were sometimes significant,
although the corresponding model had a larger AIC because of the
large number of degrees of freedom required. Contrary to what
was expected from the exploratory analysis, the spatial effect was
not highly significant. It is likely that the contribution of this vari-
able is included in the explanatory power of the vessel or métier
that may encompass the effects associated with the skipper effect
and/or fishing tactic. Finally, the contribution of the vessel effect
derived from this first-step analysis varied between 10 and 52%
among the seven fleets (Table 6).

Vessel technical fishing power
The goodness of fit of the vessel logbook base model 1 and the
vessel tecvess base model 2 are equal (Tables 5 and 6), and the

Table 6. Outcomes of step 2 of the analysis (individual fishing power estimates), with vessel logbook base model 1.

Variables d.f.
Residual
deviance AIC

% deviance
explained DAIC

Fleet 1 1 1 13 584 225 144 – 7 801
Vessel 310 6 469 231 610 52 1 335
Vessel + area 15 6 370 231 610 53 1 335
Vessel + area + month 11 6 094 231 719 55 598
Vessel + area + month + year 4 5 926 232 347 56 598
Vessel + area + month + year + métier 1 5 853 232 457 57 488
Vessel + area + month + year + métier + vessel × métier 100 5 490 232 835 60 0

Fleet 2 1 1 15 132 138 078 – 5 132
Vessel 27 12 802 135 607 15 2 660
Vessel + month 11 12 253 134 976 19 2 029
Vessel + month + year 6 10 670 132 946 29 0

Fleet 3 1 1 14 394 139 332 – 6 384
Vessel 54 11 202 136 694 22 3 746
Vessel + area 37 9 913 135 463 31 2 515
Vessel + area + month 10 9 255 134 758 35 1 809
Vessel + area + month + year 5 7 770 132 948 46 0

Fleet 4 1 1 5 128 22 790 – 7 998
Vessel 59 3 878 19 843 24 5 051
Vessel + area 112 3 288 18 257 36 3 465
Vessel + area + month 11 3 163 17 855 38 3 063
Vessel + area + month + year 6 2 708 16 163 47 1 371
Vessel + area + month + year + year × month 66 2 574 15 738 50 946
Vessel + area + month + year + year × month + month × area 708 2 075 14 792 60 0

Fleet 5 1 1 3 249 7 957 – 1 322
Vessel 46 2 928 7 829 8.6 1 195
Vessel + month 8 1 731 6 767 41.3 132
Vessel + month + year 5 1 639 6 663 43.9 29
Vessel + month + year + year×month 40 1 323 6 299 53.4 0

Fleet 6 1 1 28 999 120 697 – 13 641
Vessel 54 17 263 111 441 40 4 385
Vessel + area 121 16 140 110 517 44 3 461
Vessel + area + month 11 15 773 110 142 46 3 086
Vessel + area + month + year 4 14 979 109 264 48 2 208
Vessel + area + month + year + métier 3 14 642 108 880 50 1 824
Vessel + area + month + year + métier + vessel × métier 135 12 940 107 056 55 0

Fleet 7 1 1 1 876 2 121 090 – 49
Vessel 67 1 650 21 091 12 48
Vessel + area 17 1 581 21 134 18 5
Vessel + area + month 2 1 576 21 139 26 0

Vessel, vessel identifier; area, ICES rectangle; % deviance explained (model), residual deviance (model ¼ �1) 2 residual deviance (model)/residual deviance
(model ¼ �1); DAIC (model), AIC (model) 2 min (AIC); min (AIC), the minimum value of the AIC among the nested models.
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rank of the contribution of each explanatory variable is similar in
both models. This result confirms that the outcomes derived from
the vessel tecvess base model can be extended to the Eflalo dataset.
Year of acquisition and tonnage (grt) are the most frequently
identified significant variables (Table 7). Contrary to what might
have been expected, hp is only significant for fleet 5. The grt vari-
able resulted in lower AIC scores, with the largest explained
deviance for fleets 3–5 (Table 7). Fleet 7 distinguishes itself
from the others with vessel length as the most significant variable,
whereas bollard pull was the most significant variable for fleet
2. The latter is not unexpected, however, because it is a measure
of the maximum power of the vessel and is believed to be a
good proxy for technical efficiency.

Vessel factor was substituted by the relevant vessel technical
characteristics identified above for each fleet and fitted to the tech-
nics tecvess base model 3. The AIC score of model 3 was still lower
than the AIC score of the vessel tecvess base model 2 (not shown),
however. For most fleets, the vessel effect was larger than the
measured technological effects, although this was less obvious
for fleet 3 (Table 7). The difference between the deviance explained
using the vessel effect and detailed vessel characteristics (i.e.
Tecvess) may be the result of either a genuine skipper/crew
effect or other technical characteristics of the fleet not considered
in these analyses.

Gear technical fishing power
This step of the analysis was only carried out for fleets 1–3 and
6. As for the comparison of the vessel logbook base model 1 and
the vessel tecvess base model 2, the relative contributions of
factors in the vessel tecgear base model 4 and in the vessel

logbook base model 1 are similar, suggesting that the samples of
trips in the Eflalo and Tecgear databases are equally representative.
In the technics tecgear base model 5, the vessel factor was excluded
and substituted by gear technical characteristics. Type of ground-
rope, length of headline, and weight of otter boards were the most
common and significant gear characteristic factors (Table 8).
Comparison of columns 2, 3, and 5 of Table 8 provides an assess-
ment of the relative contribution of human and technical effects
on fishing power. As expected, the vessel effect is still greater
than that of the measured technical features of the gear. The dis-
crepancy between vessel and gear technical effects is lower than
that between vessel and vessel technical effects (Table 7),
suggesting that fishing power is more closely associated with
gear characteristics than with vessel characteristics. Adding all
technical effects together, the explanatory power of the technics
tecvess tecgear base model 6 is still lower than the vessel tecgear
base model 4. Technical characteristics explained 4% of the
vessel effects for fleet 1 and 5% for fleet 6 (T in Figure 2). If it is
assumed that all technical components of fishing power are cap-
tured by the technical characteristics included in the model and
that the human component of fishing power is included in the
vessel effect, then the magnitude of H in Figure 2 (varying from
0.2% for fleet 3 to 5% for fleet 1) is at the upper bound of the con-
tribution of human skill to fishing power.

Discussion
Catchability is influenced by processes linked to fishing power, i.e.
the technical characteristics of the fishing gear/vessel and human
factors such as experience or strategy (Robins et al., 1998; Goñi
et al., 1999; Mahévas et al., 2004), along with processes linked to

Table 7. Outcomes of step 2, the salient vessel characteristics and their effect on lpue variability (fleets 1–7) using the two nested models
vessel tecvess base model 2 and technics tecvess base model 3.

Fleet

Percentage deviance with
common factors (area, year,

métier, month from model 3)

Significant vessel technical
characteristics (tecvess
variables in model 3)

Percentage deviance with
common factors and tecvess
variables (from model 3)

Percentage deviance with
common factors and VE_REF
variable (from model 2)

1 41.3 Year of acquisition 44.8 60
2 13.1 Bollard pull 24.4 31.0
3 33 Tonnage and bulbous bow 35 36
4 48 Tonnage 50 60
5 36.3 Tonnage, hp 53 60
6 23.5 Year of acquisition 23.7 55
7 19 Vessel length 21.8 26.4

Table 8. Outcomes of step 3, the salient gear characteristics and their effect on lpue variability (fleets 1–3 and 6) using the two nested
models (models 4 and 5) and the contribution of technical characteristics (of vessel and gear) in the vessel effect using model 6.

Fleet

Percentage deviance
with common factors
(area, year, métier,
month from model 5)

Significant gear technical
characteristics (tecgear
variables in models 5 and
6)

Percentage deviance
with common factors
and tecgear variables
(from model 5)

Percentage deviance with
common factors, tecgear
and tecvess variables in
VE_REF (from model 6)

Percentage deviance
with common factors
and VE_REF variable
(from model 4)

1 48.9 Weight of boards length
of headline

54.3 56.8 61.3

2 11.7 Length of headline 19.5 23.8 24.4
3 31.5 Type of groundrope and

length of headline
35.9 36.3 36.5

4 No data No data No data No data No data
5 No data No data No data No data No data
6 40 Weight of boards 64.5 68 73.5
7 No data No data No data No data No data
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the biology of the exploited population, such as variation in fish
distribution and hence availability to the gear (Casey and Myers,
1998). We found that whatever the target species (anchovy,
hake, or plaice), and for most locations (North Sea, Bay of
Biscay, Mediterranean Sea), the explanatory factor with the great-
est effect on fishing power was that of the individual vessel. The
range of variability explained by that factor differed from one
fleet to another, but it accounted for .40% of the explained
deviance for at least two of the seven fleets.

When fishing tactics can be characterized accurately, the analy-
sis reveals that the métier variable is appropriate to distinguish
differences in fishing power significantly, confirming the main
conclusion of Quirijns et al. (2008) that it is important to
account for targeting behaviour to avoid bias in the standardiz-
ation of lpue. Consequently, it would be relevant to associate
métier with a fishing operation or a fishing trip. Two options
could be considered to achieve this outcome. The most suitable
would be an obligation for fishers to report in logbooks their
intended target species (as is already the case in New Zealand,
for instance). Alternatively, the métier could be computed using
catch profile and an appropriate factorial analysis. A review of
the available statistical methods for defining métier was performed
as part of the European study “Development of tools for logbook
and VMS data analysis”, and an operational algorithm was pro-
posed to allocate trips described in logbooks to métiers (Deporte
et al., 2011).

As expected, seasonal (month) and spatial factors explained a
significant proportion of lpue variability. The seasonal and
spatial aspects of effort stratification can be used to derive reliable
lpue indices, as has been argued in the literature (e.g.
Bordalo-Machado, 2006). The present results indicate that
changes in the fishing efficiency of a fleet can be both seasonally
and spatially based, suggesting that the spatial and seasonal dimen-
sion of fishery management needs to be investigated carefully
when designing a management measure that is spatially explicit

(or its effects will have spatially explicit consequences). More
specifically, the outputs of this analysis can be helpful for designing
an appropriate marine protected area (MPA), for example, in the
context of the ecosystem approach to fisheries management. One
may suggest, for instance, closing a fishery during the period and/
or in the fishing area characterized by the greatest fishing power if
the objective is to minimize mortality on a vulnerable stock.

Clear temporal variation was also evident from the significant
year effect and/or the interactions with year for all demersal
fleets (fleets 1, 2, 4, and 6) and the Greek pelagic fleet (fleet 5).
Except the Spanish Basque demersal fleet (fleet 6), there was no
clear increasing or decreasing trend in the year effect in the
short period considered. Generally, a positive trend in year effect
was expected and can be explained as technological creep and/
or improvement in skills (Marchal et al., 2006a; Quirijns et al.,
2008). In contrast, the Basque demersal fleet (fleet 6) was charac-
terized by a decrease in the year effect. Such a pattern has been
observed too for a French demersal fleet targeting anglerfish
(Lophius budegassa and Lophius piscatorius; Mahévas et al.,
2004). A potential reason for this trend is a change in abundance.
Indeed, the estimate of the year effect captures both fishing power
and variations in abundance. It should be noted too that residual
variations in abundance can easily swamp the influence of techni-
cal factors. As proposed by several authors already, external infor-
mation to accompany logbook data can be used to represent
abundance in a model, to remove the possible confounding
effect of temporal variations in abundance on lpue (Mahévas
et al., 2004; Bishop et al., 2008). However, the abundance
indices available for our analyses were based on juvenile surveys
that are sensitive to recruitment variability, so not appropriate
to reflect interannual variations in the accessible part of the popu-
lation and hence not suitable for the modelling approach here.

The results of this study have also revealed that differences in
fishing power are explained by both technical and human com-
ponents to various degrees. Initially, we were interested in identi-
fying which technical characteristics could be relevant control
parameters for technical management approaches. For pelagic
trawlers, vessel characteristics (tonnage) explain most of the
fishing power variability, but for demersal trawlers, gear character-
istics (type of groundrope, headline length) dominate. Engine hp,
largely used as a control variable for regulating fishing capacity,
was only significant for the Greek pelagic fleet. Therefore, this
study confirms the conclusion of Mahévas et al. (2004) that hp
is not the most appropriate variable for use in standardizing and
managing fishing effort. On the other hand, type of groundrope
and length of headline are generally unused variables for control-
ling fishing effort, whereas the outcomes of this analysis show their
relevance for proposing technical measures aimed at regulating
fishing effort. The results also confirm the importance of bollard
pull as a determinant of fishing power, and we believe that there
is a case for this variable to be recorded systematically in fishery
data-collection programmes. Again focusing on trawlers, we
obtained the same results as Marchal et al. (2006a), with the expla-
natory power of technical characteristics mostly less than that of
the vessel.

The results from these case studies depend heavily on the
quality of the vessel and gear technological data collected during
harbour enquiries or reported in administrative registers. Only
four fleets of the seven had detailed information on technological
equipment carried on board. For some cases, however, a larger
sample would be needed to carry out meaningful analysis, so

Figure 2. Relative contribution of the human component (H) and
the technical component (T) in fishing power estimates (vessel).
The human component refers to the residual vessel effects after
controlling for measured vessel and gear characteristics. The height
of the bars represents the variability in lpue in the dataset used to fit
model 4 (left) and model 6 (right). Each block within the bar reflects
the proportion of variability explained by the explanatory factors
(A, area; Y, year; Mé, métier; Mo, month; Tecgear, combinations of
gear characteristics; Tecvess, combinations of vessel characteristics;
Table 8). The portion of each of the bars not labelled represents the
“unexplained” variance.
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widespread use of any conclusions from this study should be con-
sidered with care. However, the data were generally useful in iden-
tifying the major determinants of fishing power. The relative
significance of different explanatory variables is also impacted by
the extent of aggregation used, i.e. days and daily landings rather
than haul-by-haul data during a fishing operation. Therefore, it
is also desirable that technical features of both vessels and gears
be monitored, or recorded by fishers, at the scale of a fishing
trip (vessel equipment) or at least at the scale of a fishing operation
(gear equipment).

Most studies of fishing power identify the main technical
characteristics accountable for changes in power and technological
creep (Robins et al., 1998; Mahévas et al., 2004; Bordalo-Machado,
2006; Marchal et al., 2006a), but few evaluate and quantify the
human contribution. The human component in fishing power
could be associated with the accumulation of knowledge of fish
population behaviour and of experience in selecting fishing
grounds and/or in operating fishing equipment, each of which
or in combination may have a positive impact on the power
(Squires and Kirkley, 1999; Marchal et al., 2006b; Ye and
Dennis, 2009). Our approach here, comparing the explanatory
power of nested fitted models, allowed us to assess the relative con-
tribution of the technical characteristics and their effects on fishing
power on the one hand and provided an evaluation of an upper
bound of the non-technical (human) component of fishing
power on the other. For the fleets for which both gear and vessel
technical characteristics are described, gear technical character-
istics explained more differences in fishing power than vessel
characteristics. The discrepancy between the explanatory power
of the model including the vessel effect (the vessel tecgear base
model 4) and the models substituting the vessel effect with all tech-
nical characteristics (the technics tecvess tecgear base model 6)
provides an estimate for an upper bound of the human effect
(the skipper/crew experience effect). If we consider that all impor-
tant technical characteristics are included in the technics tecvess
tecgear base model 6, then the relative measure obtained demon-
strates that the contribution of the human component in fishing
power is weaker than the technical one, but in all likelihood it is
not negligible.

Based on these results, we conclude that measures that ignore
the human component could lead to undesirable side effects
when managers attempt to control the fishery with direct effort
restrictions alone. An interesting perspective of this research will
be to use some appropriate simulation models to assess the relative
improvement that could be reached using alternative management
measures based on the conclusions derived here. Several bioeco-
nomic modelling frameworks of fisheries dynamics have been
developed recently to assess the impact of management strategies
(e.g. ISIS–Fish: Mahévas and Pelletier, 2004; FLR: Kell et al.,
2007). Computation of the fishing mortality of the ISIS–Fish
model requires an estimate of fishing power that can be linked for-
mally to the technical characteristics of the fleet (Pelletier et al.,
2009). Moreover, that model explicitly takes into account the
spatial features of a fishery’s dynamics and has already shown its
relevance for assessing the impact of MPAs (Kraus et al., 2009;
Lehuta et al., 2010). For example, selecting as a case study the
demersal fishery in the Bay of Biscay targeting hake (Drouineau
et al., 2006), there is value in comparing the impact of a new tech-
nical measure regulating the use of rock-hopper gear (a type of
groundrope) with that of a spatial and seasonal closure of the
fishery. The human component could be considered quantitatively

as an input parameter in an uncertainty analysis to assess the
robustness of the forecasts and to provide an opportunity to quan-
tify implementation error associated with this issue.

In future studies on catchability, it would also be appropriate to
assess the relative contribution of the technology–human com-
ponent and the biological component. To disentangle these two
effects, real-time observations on the fish populations are required;
unfortunately these were not available for this study. Indeed,
promising results from a recent study combining the use of acous-
tic data and catch per unit effort from a small fleet operating in a
limited area for a short period (Doray et al., 2010; Mahévas et al.,
2011) have provided insight into the magnitude of the two effects.
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2262 S. Mahévas et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article-abstract/68/10/2252/613445 by AZTI FU
N

D
AC

IO
N

 user on 30 M
ay 2019
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Lehuta, S., Mahévas, S., Petitgas, P., and Pelletier, D. 2010. Combining
sensitivity and uncertainty analysis to evaluate the impact of man-
agement measures with ISIS–Fish: marine protected areas for the
Bay of Biscay anchovy (Engraulis encrasicolus) fishery. ICES
Journal of Marine Science, 67: 1063–1075.

MacCall, A. 1990. Dynamic Geography of Marine Fish Populations.
University of Washington Press, Seattle. 153 pp.
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