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A two-stage biomass dynamic model for Bay of Biscay anchovy is presented. Compared with the model currently applied by ICES for
the assessment of that stock, the new model separates the growth and natural mortality processes and allows them to differ by age
class. Stochastic equations involving the observed weights by age class in surveys are incorporated to provide information on growth
rates. The fishing process is modelled separating fishing mortality into year and age-class effects in each semester, and observation
equations are introduced for total catch and catch proportion by age class (in biomass) by semester. The model is first tested on
simulated data, then applied to real data for the years 1987–2008. Although the results are affected by survey catchability and
natural mortality assumptions, estimates of population trends, when expressed in relation to the value in a given year, are robust.
The new model has significantly more parameters, requiring longer computational time for its fitting, which is done in a Bayesian
context. However, it does allow the testing of different assumptions on natural mortality, which is of special interest after the
recent fishery closure, and estimating new parameters, which could provide further insight on stock and fleet dynamics.
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Introduction
The most common fish stock assessment methods currently used
are age-structured population models based on either virtual
population analysis or statistical catch-at-age-type approaches
(Hilborn and Walters, 1992). Catch-at-age data are essential for
fitting this type of model, but the reliability of commercial data
has often been questioned (Cotter et al., 2004). For small pelagic
fish, even if commercial catch data are reliable, the short life expec-
tation of the fish makes following cohorts in age-structured
models difficult. At the same time, their characteristic aggregating
behaviour prevents the use of commercial catch per unit effort
(cpue) as an index of abundance (Csirke, 1988; Pitcher, 1995).
Moreover, small pelagic fish stocks are highly sensitive to environ-
mental change and suffer large and variable natural mortality.
Some of these issues are addressed by close monitoring using
fishery-independent research surveys, such as with acoustics and
of ichthyoplankton (Gunderson, 1993). The abundance estimates
may then be used as tuning indices to fit assessment models
(Barange et al., 2009).

Many authors have explored models that rely less heavily on
catch-at-age data (Beare et al., 2005; Porch et al., 2006). This is
the case for Bay of Biscay anchovy (Engraulis encrasicolus). Its
current ICES assessment is conducted by a two-stage biomass
dynamic model, where commercial catches are subtracted from

the stock at two time instances each year without modelling the
fishing process (Ibaibarriaga et al., 2008; ICES, 2009a).
Alternatively, in the biomass random-effect model applied to the
same stock by Trenkel (2008), catches are not considered at all,
and model fitting is based solely on survey abundance indices.
In both models, the population is structured into two age classes
(recruits and adults), similar to the models of Collie and
Sissenwine (1983), Mesnil (2003), Roel and Burtterworth (2000),
and Roel et al. (2009), which has been demonstrated to be suffi-
cient to track the main dynamics of the anchovy stock successfully.

Nevertheless, catch data are still considered potentially to
provide useful information for Bay of Biscay anchovy. Up to
2005, when the stock was assessed using integrated catch-at-age
analysis (ICA; Patterson and Melvin, 1996; ICES, 2005), catch
data were especially useful in years when the abundance indices
from the two research surveys (daily egg production method,
DEPM, and acoustics) disagreed or were not available. The ICA
model is age-structured, with fishing mortality separated into
age effects and year effects, and is fitted using abundance indices
from surveys and catch-at-age data. An extension that allows for
five different fleets operating through the year, called seasonal
ICA (SICA) has also been developed (ICES, 2005, 2009b). The
results of ICA and SICA are similar for the common parameters,
but the annual fishing mortality and age-selectivity estimates
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from ICA can be decomposed into the seasonal fishing mortality
and age-selectivity estimates from SICA.

The rate of natural mortality (M) is a key parameter to describe
fish population dynamics (Hilborn and Walters, 1992). However,
it is difficult to separate the mortality effects attributable to natural
causes (cannibalism, predation, etc.) from those attributable to
fishing, so M is usually estimated from alternative sources
(Vetter, 1988), and the estimate is used in stock assessment
models assuming that it is known and constant over time. The
other parameters are estimated relative to the assumed natural
mortality. There is one situation in which abundance indices
from research surveys could provide some information on M,
namely in the absence of fishing. The fishery for Bay of Biscay
anchovy collapsed in 2005 and was closed from then until
March 2010. Although, for small pelagic stocks, natural mortality
is expected to be highly variable depending on environmental con-
ditions, some new knowledge of average M is to be expected from
research surveys in recent years.

The main objective of this paper is to study whether commer-
cial catch data (including the absence of catches during the fishery
closure) can provide useful information for the assessment of Bay
of Biscay anchovy. In the two-stage biomass-based model
described in Ibaibarriaga et al. (2008), catches were assumed to
occur instantaneously and were simply subtracted from the popu-
lation at two time-instances each year. In the model extension
developed here, catch is assumed to be continuous in time.
Fishing mortality is separated by semester, representing two dis-
tinct fishing patterns. The first semester fishery consists mainly
of the Spanish purse-seine fishery operating in spring, and the
second semester fishery primarily includes operations of the
French fleet (Uriarte et al., 1996, 2008; Vermard et al., 2008).
Two stochastic observation equations for commercial catch (one
for total catch, the other for proportion by age class, in
biomass) are included per semester. In addition, rates of growth
and natural mortality, which were captured by a single parameter
in the two-stage biomass dynamic model in Ibaibarriaga et al.
(2008), are considered separately and additionally split by age
class. The annual intrinsic growth rates are estimated from obser-
vations, whereas rates of natural mortality are either assumed
known or treated as unknown model parameters.

The model is fitted in a Bayesian framework. The performance
of the new model is first tested on simulated data, then applied to
real data for the years 1987–2008. Advantages and disadvantages
of the new model with respect to the previous one are discussed,
and gains and losses from the incorporation of observation
equations for commercial catch data are summarized. The applica-
bility of this model to other fish stocks is also evaluated.

Model description
State equations
Let B(t, y, a) denote the biomass of age a at time-instant t (0 ≤t ≤
1) in year y (where age class a+ denotes individuals aged a and
older). Recruitment in year y refers to age 1 biomass at the start
of the year and is assumed to be lognormally distributed with
mean mR and precision (inverse of variance) cR, i.e.

log(Ry) = log B(0, y, 1)
( )

� Normal mR

(
, 1/cR

)
. (1)

Biomass at age a (a ¼ 1, 2+) evolves during semester j ( j ¼ 1, 2)

as follows:

B(t, y, a) = B(bsemj
, y, a) exp{(Ga − Ma

− f (semj, y)s(semj, a))(t − bsemj
)}, (2)

where t is a time-point during the semester, bsemj
denotes the

beginning of the semester, Ga and Ma are the intrinsic growth
and natural mortality rates at age, and f(semj, y) and s(semj, a)
represent the year and age factors of the fishing mortality rate in
that semester.

Two monitoring surveys, an acoustic one and a DEPM, take
place at time tsurv. For modelling purposes, it is assumed that
both surveys take place on 15 May each year (tsurv¼ 0.375).
From Equation (2), biomass of ages 1 and 2+ at survey time
will be

B(tsurv, y, 1) = Ry exp{(G1 − M1

− f (sem1, y)s(sem1, 1))tsurv}, (3)

B(tsurv, y, 2+) = B(0, y, 2+) exp{(G2+ − M2+

− f (sem1, y)s(sem1, 2+))tsurv}, (4)

where B(0, y, 2+) is the biomass surviving from the previous year,
which may be computed as

B(0, y, 2+) =
∑

a=1,2+
B(tsurv, y − 1, a) exp{(Ga − Ma)(1 − tsurv)

− f (sem1, y − 1)s(sem1, a)(0.5 − tsurv)
−f (sem2, y − 1)s(sem2, a)0.5}.

(5)

The total biomass at the time of the survey is the sum of the two
age groups:

B(tsurv, y, 1+) =
∑

a=1,2+
B(tsurv, y, a), (6)

and the age 1 biomass proportion (BP) is given by

BP(tsurv, y) = B(tsurv, y, 1)
B(tsurv, y, 1+) . (7)

According to the Baranov catch equation (Baranov, 1918), the
catch at age a (in biomass) in semester j of year y is

C(semj, y, a) = B(bsemj
, y, a)

{1 − exp{(Ga − Ma − f (semj, y)s(semj, a))0.5}}
f (semj, y)s(semj, a)

−Ga + Ma + f (semj, y)s(semj, a) .

(8)

The total catch is the sum of the two age classes:

C(semj, y, 1+) =
∑

a=1,2+
C(semj, y, a), (9)
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and the age 1 biomass proportion in the catch (CP) is

CP(semj, y) = C(semj, y, 1)
C(semj, y, 1+) . (10)

Observation equations
The observation equations for the survey biomass indices
Bsurv(tsurv, y, 1+) and age 1 biomass proportion BPsurv(tsurv, y)
are the same as in Ibaibarriaga et al. (2008):

log(Bsurv(tsurv, y, 1+))

� Normal log(qsurv) + log(B(tsurv, y, 1+)), 1

csurv

( )
,

(11)

BPsurv(tsurv, y) � Beta(ejsurv BP(tsurv, y),

ejsurv (1 − BP(tsurv, y))),
(12)

where for each survey surv ¼ depm, ac (DEPM and acoustics),
qsurv denotes the catchability, csurv is the precision, and jsurv is
related to the variance of the observation equation for the age 1
biomass proportion. In particular, the variance of BPsurv(tsurv, y)
is given by (1 + ejsurv )−1BPsurv(tsurv, y)(1 − BPsurv(tsurv, y))(see
Ibaibarriaga et al., 2008, for further detail).

The total catches observed by semester Cobs (semj, y, 1+) are
assumed to be lognormally distributed with the mean given by
the actual catches (on a log-scale) according to the model and pre-
cision ccatch:

log(Cobs(semj, y, 1+)) � Normal log(C(semj, y, 1+)), 1

ccatch

( )
.

(13)

The observation equation for the age 1 biomass proportion in the
catch is taken as

CPobs(semj, y) � Beta(ejcatch CP(semj, y), ejcatch (1 − CP(semj, y))),
(14)

where jcatch is a parameter related to the variance of the obser-
vation equation.

In addition, the stock weights-at-age estimated from the
surveys are used to include observation equations for the intrinsic
growth parameter Ga:

Gobs(y, a) � Normal Ga,
1

cG

( )
(15)

for a ¼ 1, 2+, where Gobs(y, a) = log(wy+1,a+1/wy,a) is the log-
arithm of the weights-at-age ratio estimated from surveys in con-
secutive years. Basically, ages 1, 2, and 3+ are observed in the
surveys, and the observations for the growth parameter at age
2+ are computed from the weights at ages 2 and 3+, using an
average weighted by abundance-at-age.

All the observation equations [Equations (11)–(15)] are
assumed to be independent of each other, as well as independent
across years y ¼ 1, . . . , Y, age groups a ¼ 1, 2+, semesters j ¼ 1,
2, and surveys surv ¼ depm, ac.

Parameters and prior distributions
The unknown parameters are the initial biomass, B0 ¼ B (0, 1,
2+), defined as the age 2+ biomass at the start of the first year
(y ¼ 1), the average log-recruitment level, mR, the precision of
the normal process for log-recruitment, cR, the survey catchabil-
ities, qdepm and qac, the parameters affecting the precision of the
observation equations, cdepm, cac, jdepm, jac, and jcatch, the year
and age components of the fishing mortality by semester, f(semj,
y) and s(semj, a), the annual intrinsic growth rates by age, Ga,
the precision of the observation equations of growth, cG, and
the annual natural mortality rates by age, Ma. Fishing mortality,
which is the product of f(semj, y) and s(semj, a), can be estimated,
whereas the component parameters f(semj, y) and s(semj, a) can
only be estimated in relation to each other. To resolve this issue,
the 2+ age-class selectivity parameters have been fixed to 1, i.e.
s(semj, 2+) ¼ 1 for both semesters. Therefore, f(semj, y) corre-
sponds to the fishing mortality of the 2+ age class. No discards
or underreporting are expected, and the recorded total landings
are assumed to be very close to the actual catches. Hence, the par-
ameter ccatch is fixed at 400, which corresponds to a CV of 5% in
the total catch observation equation (13). In a Bayesian context, a
prior distribution has to be elicited for all unknown parameters. It
is assumed that all are independent a priori, so that the joint prior
distribution is the product of the individual prior distributions,
which are chosen to be

log(qsurv) � Normal mqsurv
, 1/cqsurv

( )
, surv = depm, ac

csurv � Gamma acsurv
, bcsurv

( )
, surv = depm, ac

jsurv � Normal mjsurv
, 1/cjsurv

( )
, surv = depm, ac

jcatch � Normal mjcatch
, 1/cjcatch

( )

log f (semj, y)
( )

� Normal mf , 1/cf

( )
, j = 1, 2, y = 1, ...,Y

s(semj, 1) � Unif as, bs( ), j = 1, 2

log(B0) � Normal mB0
, 1/cB0

( )
mR � Normal mmR

, 1/cmR

( )

cR � Gamma acR
, bcR

( )
log(Ga) � Normal mlog(G), 1/clog(G)

( )
, a = 1, 2+

cG � Gamma acG
, bcG

( )
log(Ma) � Normal mlog(M), 1/clog(M)

( )
, a = 1, 2 + .

(16)

The hyperparameters of the prior distributions and correspond-
ing medians and 90% probability intervals are listed in Table 1.
The prior distributions were centred at values that were considered
realistic and chosen to have substantial but not unreasonably large
dispersion. Some of the hyperparameters used in Ibaibarriaga et al.
(2008) were modified to obtain narrower prior probability inter-
vals. Sensitivity of the results of the previous model to the new
priors was analysed and no influence was found, except for absol-
ute population levels when all model parameters were estimated. It
is especially in that case that the new prior distributions are con-
sidered more reasonable and appropriate.
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Inference
From Bayes’ theorem, the joint posterior probability density func-
tion (pdf) of the unknowns is proportional to the product of the
pdfs given in Equations (1) and (11)–(16). Markov chain Monte
Carlo (MCMC) techniques (Gilks et al., 1996) were used to sample
from the posterior distribution. The implementation was done
using the software BUGS (Bayesian inference Using Gibbs
Sampling; Spiegelhalter et al., 1996; Gentleman, 1997; Lunn
et al., 2000), which can be freely downloaded from www.mrc-
bsu.cam.ac.uk/bugs/. The WinBUGS development interface
(Lunn, 2003) reduced run times by about a factor of 20 (Lunn
et al., 2009). Analysis of the results was conducted in R (www.r-
project.org). In particular, inspection of the MCMC draws used
the package CODA (Convergence Diagnostics and Output
Analysis; Best et al., 1997).

Application
Before analysing the real dataset, the properties of the model and
the performance of the MCMC algorithm were studied on simu-
lated data. Two types of dataset were generated according to the
model equations [except for annual recruitment, which did not
follow Equation (1), but were instead taken as the estimated
values from the SICA model, as explained below], emulating the
main features of the real data. Datasets of the first type corre-
sponded to the years 1987–2004. Although the real dataset ana-
lysed here runs until 2008, given the fishery closures since 2005,
it was easier to simulate realistic datasets terminating the simulated
dataseries in 2004. For each dataset of the first type, a second one
was considered, which was identical to the first until 1999, but
incorporated a fishery closure from year 2000. Population levels
differed from the first dataset only since year 2000, owing to the
absence of fishing, and new survey observations were simulated
for those years. Observations on growth rates at age were the
same as in the first dataset. The purpose of the second type of
dataset was to explore whether the absence of catches allowed
better estimation of the rates of natural mortality. For each type
of dataset, 15 replicates were generated, all 15 corresponding to
the same underlying population values and parameters in the
observation equations, differing only in the actual observed data.

The results presented here are based on MCMC runs with
random starting values sampled from the prior distributions.
Mixing of the chains was slow because of high correlation

between the parameters. Chain behaviour was examined by visu-
ally inspecting traces, cumulative plots, and autocorrelation func-
tions. Convergence diagnostics implemented in CODA confirmed
that chain length (1 100 000 iterations), burn-in period (first
100 000 iterations discarded), and thinning interval (1 out of
200 iterations kept) were sufficient to estimate the posterior
median and 90% probability intervals with the reported accuracy.

Simulated data
Simulated data were based on the results of the SICA model run on
data from 1987 to 2004 (ICES, 2005), under the assumption that
natural mortality was M1 ¼M2+ ¼ 1.2. SICA was used instead
of ICA, because it allows modelling various fleets throughout the
year, which is relevant for Bay of Biscay anchovy.

Initial biomass (B0) and annual recruitment (Ry) were taken to
be the values estimated by SICA, after converting numbers into
biomass using the stock weights. Annual fishing mortality rates
by semester, f(semj, y), were also computed from the SICA esti-
mates as the average of the rates of fishing mortality of each of
the fisheries within each semester (the winter French fishery, the
Spanish and French spring fisheries for the first semester, and
the Spanish and French fisheries for the second semester).
Similarly, age 1 selectivity was taken as the average of age 1 selec-
tivity SICA estimates of the fisheries in each semester, resulting in
s(sem1,1) ¼ 0.318 and s(sem2,1) ¼ 0.824. The selectivity of the 2+
age class was fixed at 1, as already mentioned. Intrinsic growth par-
ameters were calculated as the average log ratio of the stock
weights-at-age, leading to G1 ¼ 0.6 and G2+ ¼ 0.2. Total popu-
lation biomass and age 1 proportion at survey time and total
catch biomass and age 1 proportion in each semester were calcu-
lated from the above parameters values using Equations (3)–(10).

Catchability values of the DEPM and acoustic survey indices
from SICA were used (qdepm ¼ 1, qac ¼ 1.35). The other par-
ameters in the observation equations were taken as cdepm ¼ 35,
cac ¼ 70, and jdepm ¼ jac¼ 4.68, derived from the estimated stan-
dard errors of the real survey indices until 2008. The precision of
the observation equation of total catch was taken as ccatch¼ 400,
which corresponds to a CV of �5%. This is considered a realistic
CV for anchovy catches, because experts consider that the quantity
caught is known essentially without error. The parameter affecting
the variance of the observed age proportion in the catch was taken
as jcatch ¼ 4, leading to a smaller precision of the observed age
proportion for the catch than for the surveys. The precision of
the observation equation of the growth-rate parameters was
taken as cG ¼ 36 based on the precision of the observations in
the real dataset. Total biomass indices, age 1 biomass proportion
estimates, observed total catch by semester, observed age 1
biomass proportion in the catch, and observed intrinsic growth
rates by age were drawn from observation equations (11)–(15),
conditioning on the “true” population and values of the par-
ameters intervening in the equations.

Four different inference settings were explored, depending on
whether the DEPM survey was assumed to provide an absolute
or a relative abundance index (qdepm ¼ 1 or estimated) and on
whether the rates of natural mortality by age were assumed
known or unknown (M1 ¼M2+ ¼ 1.2 or estimated). Table 2 sum-
marizes posterior inference on model parameters for one replicate
dataset of the first type (i.e. with data from 1987 to 2004, without
fishery closure). Most of the general features of the results are,
however, representative of the results found for other replicate
datasets of the same type. Under the four settings, the “true”

Table 1. Hyperparameters specifying the prior distribution and
corresponding medians and 90% central probability intervals for
the model parameters.

Parameter Hyperparameter
Median (90% probability

interval)

qsurv mqsurv
= 0cqsurv

= 2 1 (0.3, 3.2)
csurv acsurv

= 0.9 bcsurv
= 0.02 29.8 (1.7, 139.9)

jsurv mjsurv
= 5cjsurv

= 0.2 5 (1.3, 8.7)
jcatch mjcatch

= 5 cjcatch
= 0.2 5 (1.3, 8.7)

B0 mB0
= 10.3 cB0

= 1.0 29 733 (5 740, 154 022)
mR mmR

= 9.8 cmR
= 1.0 9.8 (8.2, 11.4)

cR acR
= 2 bcR

= 3 0.6 (0.1, 1.6)
s(semj, 1) as = 0 bs = 2 1.0 (0.1, 1.9)
f (semj, y) mf = −0.9 cf = 1 0.4 (0.1, 2.1)
Ma mlog(M) = 0.2 clog(M) = 5 1.2 (0.6, 2.5)
Ga mlog(G) = −0.7 clog(G) = 2 0.5 (0.2, 1.6)
cG acG

= 1.5 bcG
= 0.1 11.8 (1.8, 39.1)
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Table 2. Results for the first type of simulated dataset (1987–2004, without fishery closure), for different assumptions on natural mortality and DEPM survey catchability, listing posterior
quantiles for a particular replicate and the median across all replicates of the individual posterior medians.

Parameter “True”

DEPM absolute DEPM relative

M1 and M21 estimated M1 and M21 fixed M1 and M21 estimated M1 and M21 fixed

1 replicate
All

1 replicate
All

1 replicate
All

1 replicate
All

5% 50% 95% 50% 5% 50% 95% 50% 5% 50% 95% 50% 5% 50% 95% 50%

qdepm 1 – – – – – – – – 0.72 0.92 1.10 1.02 0.89 1.01 1.14 1.01
qac 1.35 1.23 1.33 1.44 1.34 1.24 1.34 1.45 1.34 0.96 1.22 1.47 1.32 1.18 1.35 1.51 1.31
cdepm 35 21.87 41.44 73.54 33.90 22.84 42.50 74.35 31.58 22.12 42.81 75.25 33.35 21.94 41.40 73.78 31.56
cac 70 26.39 54.61 105.31 55.25 26.65 53.57 102.21 54.41 28.55 56.96 108.20 56.96 26.49 52.86 98.89 53.63
jdepm 4.68 3.61 4.33 5.03 4.68 3.73 4.37 5.02 4.61 3.59 4.29 4.91 4.71 3.72 4.41 5.03 4.64
jac 4.68 4.31 5.19 6.29 4.52 4.43 5.14 5.97 4.60 4.42 5.20 6.22 4.53 4.38 5.17 6.15 4.59
jcatch 4 3.19 3.63 4.04 4.03 3.22 3.66 4.06 3.99 3.21 3.64 4.03 4.00 3.17 3.64 4.03 3.98
B0 28 000 24 343 29 437 35 954 27 447 23 389 27 447 32 209 26 108 24 588 31 571 41 773 28 283 22 925 27 447 33 190 26 635
mR – 10.35 10.68 10.99 10.68 10.42 10.72 11.03 10.68 10.42 10.79 11.19 10.69 10.39 10.72 11.03 10.69
cR – 1.02 1.80 2.86 1.69 1.00 1.78 2.88 1.69 1.00 1.76 2.84 1.69 1.01 1.78 2.84 1.69
s(sem1, 1) 0.318 0.29 0.34 0.40 0.34 0.29 0.33 0.38 0.33 0.28 0.33 0.39 0.33 0.29 0.33 0.38 0.33
s(sem2, 1) 0.824 0.56 0.73 0.96 0.76 0.72 0.84 0.99 0.82 0.59 0.77 0.99 0.77 0.72 0.85 0.99 0.83
M1 1.2 0.75 1.07 1.36 1.14 – – – – 0.84 1.16 1.44 1.15 – – – –
M2+ 1.2 1.12 1.40 1.74 1.25 – – – – 1.12 1.37 1.71 1.26 – – – –
G1 0.6 0.55 0.61 0.67 0.63 0.54 0.60 0.65 0.63 0.55 0.61 0.67 0.63 0.54 0.60 0.66 0.63
G2+ 0.2 0.17 0.23 0.29 0.22 0.16 0.21 0.26 0.21 0.17 0.23 0.29 0.21 0.15 0.21 0.27 0.21
cG 36 27.28 41.12 59.00 30.43 27.56 41.23 59.00 30.05 27.17 41.06 59.25 30.19 27.44 41.15 59.12 30.25
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values are within the 90% posterior probability intervals. There are
no “true” values for mR or cR because annual recruitment was not
simulated from Equation (1). Time-series of posterior medians
and 90% probability intervals of recruitment and fishing mortal-
ities by semester for the same replicate dataset are compared
with “true” values in Figure 1. Clearly, the width of the posterior
distribution increases as more parameters are treated as
unknown. When natural mortality is considered unknown, the
estimates differ by age class, being around 1.1 for recruits and
1.4 for older fish (Table 2). Still focusing on the case of
unknown natural mortality, Figure 1 shows that recruitment esti-
mates are slightly larger and fishing mortalities slightly smaller
when the DEPM index is taken as relative instead of absolute, a
finding which must be related to the lower catchability estimates
then obtained. In contrast, when the rates of natural mortality
are fixed at their “true” values, posterior quantiles of recruitment
and fishing mortality are almost equal regardless of whether the
DEPM index is considered absolute or relative. Some of these
effects reflect the high posterior correlation between some of the
parameters, especially when all of them are estimated (Figure 2).
The catchabilities of the two surveys are strongly positively corre-
lated, which is almost certainly related to the very strong negative
correlation that they both display with the initial population
biomass (B0) and the average log-recruitment level (mR). The
catchabilities are also correlated, though less strongly, with the
annual fishing mortalities by semester (positively) and with the
natural mortality rates (negatively). The rates of natural mortality
are very strongly negatively correlated between the two age classes,
and also show very strong correlation with age 1 selectivity par-
ameters. The fact that observation equations exist for growth

rates directly makes these parameters almost independent of the
rest.

Although, for a particular replicate dataset, the model
parameters might be under- or overestimated, when medians

Figure 1. Results for one replicate dataset of the first type. Posterior median and 90% probability intervals of recruitment (top), fishing
mortality in the first (middle) and the second (bottom) semesters for different assumptions on natural mortality (solid line and cross when
natural mortality is estimated, dashed line and open square when natural mortality is fixed at its “true” value). The black dots represent the
“true” values. Left and right panels correspond to DEPM taken as absolute and relative, respectively.

Figure 2. Results for one replicate dataset of the first type. Posterior
correlations when all parameters are estimated.
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of the 5th, 50th, and 95th percentiles are computed across the
15 replicates, the resulting intervals are mostly well centred at
the “true” values, and the differences attributable to different
assumptions regarding survey catchability and natural mortality
rates are also lower. As an illustration, Table 2 displays the
median across the 15 replicates of the individual posterior
medians.

Datasets of the second type, derived from datasets of the first
type but incorporating a fishery closure in the final 5 years, aim
to examine whether estimation of natural mortality improves
with fishery closure. Figure 3 compares the posterior density func-
tions of M1 and M2+, averaged across all replicate datasets, using a
short year-span (the first 13 years of data) and the whole range of
years (18 years), with and without fishery closure in the final

Figure 3. Results for simulated data with and without a fishery closure. Prior (solid line) and posterior density functions of M1 (first row) and
M2+ (bottom row), averaged across all replicate datasets. Whole year range (18 years) without fishery closure (dotted line) and with fishery
closure (dot dashed line); short year range (first 13 years; dashed line). The left panels correspond to the case when the DEPM survey index is
considered an absolute estimate, and the right ones when it is taken as relative. The grey vertical line represents the “true” values (M1¼ M2+
¼ 1.2) used to simulate the datasets. The horizontal grey line is a baseline at y ¼ 0.

Table 3. Results (posterior quantiles) for the real dataset, for different assumptions regarding natural mortality and DEPM survey
catchability.

Parameter

DEPM absolute DEPM relative

M1 and M2 estimated M1 and M2 fixed M1 and M2 estimated M1 and M2 fixed

5% 50% 95% 5% 50% 95% 5% 50% 95% 5% 50% 95%

qdepm – – – – – – 0.867 1.110 1.392 0.651 0.800 0.989
qac 1.042 1.303 1.640 0.918 1.176 1.478 1.061 1.407 1.852 0.800 1.024 1.322
cdepm 4.162 7.636 13.131 3.547 6.899 12.240 4.264 7.835 13.321 3.738 6.791 11.880
cac 2.539 5.287 9.612 2.339 4.809 9.131 2.632 5.344 9.984 2.398 5.012 9.417
jdepm 3.019 3.935 5.246 3.198 4.062 5.227 3.173 3.986 4.795 3.108 3.945 4.926
jac 2.628 3.582 4.555 2.640 3.448 4.211 2.799 3.698 4.643 2.550 3.444 4.295
jcatch 2.573 3.058 3.592 2.466 2.978 3.482 2.584 3.043 3.489 2.514 2.979 3.491
B0 15 138 20 313 26 370 17 396 23 156 29 733 14 530 18 977 25 349 18 639 25 336 33 523
mR 9.879 10.280 10.650 10.110 10.480 10.850 9.775 10.200 10.630 10.220 10.600 10.970
cR 0.619 1.053 1.667 0.595 1.009 1.611 0.610 1.037 1.639 0.609 1.031 1.657
s(sem1, 1) 0.454 0.560 0.689 0.420 0.509 0.610 0.458 0.566 0.699 0.412 0.499 0.605
s(sem2, 1) 1.153 1.606 1.946 1.165 1.488 1.853 1.266 1.628 1.949 1.170 1.477 1.840
M1 0.515 0.836 1.218 – – – 0.493 0.797 1.244 – – –
M2+ 0.716 0.999 1.340 – – – 0.701 0.946 1.288 – – –
G1 0.436 0.556 0.670 0.562 0.677 0.808 0.445 0.558 0.673 0.527 0.637 0.759
G2+ 0.101 0.179 0.277 0.191 0.299 0.417 0.098 0.179 0.283 0.161 0.253 0.373
cG 11.330 19.000 29.861 7.978 14.320 24.041 11.250 19.055 30.391 9.180 16.485 26.821
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5 years. The left and right panels of the figure correspond to the
DEPM survey assumed to be an absolute or a relative abundance
index, respectively. When the model was applied to the shorter

year-span, M1 and M2+ tended to be under- and overestimated,
respectively, independently of the catchability assumption of the
DEPM survey. This situation was rectified when the whole range

Figure 4. Results for real data. Posterior median and 90% probability intervals of recruitment (top), fishing mortality in the first (middle) and
the second (bottom) semesters for different assumptions on natural mortality (solid line and cross when natural mortality is estimated,
dashed line and open square when natural mortality is fixed at 1.2). Left and right panels correspond to the DEPM survey index taken as
absolute and relative, respectively.

Figure 5. Results for real data. From top to bottom, posterior distributions of the total biomass and of relative biomass at the time of the
survey (total biomass at the time of the survey with respect to 1989) for different assumptions on natural mortality (solid line and cross when
natural mortality is estimated, dashed line and open square when natural mortality is fixed at 1.2). Left and right panels correspond to DEPM
taken as absolute and relative, respectively. The horizontal grey line for the relative biomass represents the 1:1 ratio.
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of years was considered. In that case, the width of the posterior dis-
tributions was also reduced because of the increase in the number
of observations. There were almost no differences in the posterior
distributions of M1 and M2+ whether the fishery was open or
closed. This might be explained by the fact that, in the model
developed here, commercial catch observations also provide
information on underlying population abundance and model

parameters, including rates of natural mortality [see Equations
(8)–(10), (13), and (14), noticing that Equation (8) involves
population abundances and model parameters].

Real data
The same model settings (qdepm ¼ 1 or estimated; M1 ¼M2+ ¼ 1.2
or estimated) were applied to the real dataset for the years

Figure 6. Results for real data. Posterior median (black dot) and 95% probability intervals (vertical segment) of Pearson’s residuals of each of
the observed time-series when the rates of natural mortality by age are estimated and the DEPM index is considered as absolute. The
horizontal solid line is located at zero.

Figure 7. Results for real data. Comparison of the posterior median and 90% probability intervals of total biomass at the time of the survey
resulting from the model presented here (solid line and cross) and from the model in Ibaibarriaga et al. (2008; dashed line and open square).
The bullets correspond to the results from SICA.
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1987–2008 (Supplementary Table S1). Table 3 and Figure 4 show
posterior medians and 90% probability intervals for the model
parameters and annual recruitment. The biggest differences
depend on the natural mortality assumption. When all parameters
are estimated, M1 and M2+ are estimated at �0.8 and 1, respect-
ively, resulting in greater catchability, lower recruitment, and
larger estimates of fishing mortality than when the rates of
natural mortality are fixed at 1.2. The top panels of Figure 5 also
show the sensitivity of population total biomass estimates at the
time of the survey to the assumptions on natural mortality and
survey catchability. However, relative biomass, defined as the
total biomass at the time of the survey divided by the correspond-
ing quantity in 1989, which is currently used as the reference for
management, is almost independent of the assumptions on
natural mortality and survey catchability (Figure 5, bottom
panels).

Posterior distributions of Pearson’s residuals when the DEPM
survey index is taken as absolute and M1 and M2+ are estimated
are shown in Figure 6. There is no clear pattern in the residuals,
so the model seems to be encapsulating the available data.
Notably, the residuals of the total catch by semester are close to
the desired distribution, centred at zero and with 95% probability
intervals between 22 and 2, owing to the high precision imposed
on their observation equations.

The results of the model developed here are compared with the
results of the previous model (Ibaibarriaga et al., 2008) for the case
where the DEPM biomass is taken as absolute, and the rates of
natural mortality and growth are estimated. For the parameters
common to both models, the prior distributions specified in
Table 1 were used. The trends in the posterior median of popu-
lation biomass are similar for both models, and in most years,
the posterior medians obtained from the previous model are
within the 90% probability intervals obtained from the new
model (Figure 7). The biggest discrepancies are in 1992, 1998,
and in the most recent years when the fishery collapsed. In
terms of precision, the posterior distributions of the biomass in
the recent years when exploitation was very low or zero are nar-
rower in the new model. The trends estimated from the SICA
model under the same assumptions (qdepm¼ 1 and M1 and M2+
estimated) are similar (Figure 7). However, even if the SICA
biomass estimates are almost always within the posterior 90%
probability intervals of the model developed here, they tend to
be lower than the posterior medians and close to the fifth percen-
tile. In the final 3 years, this pattern changes, and the SICA biomass
estimates are larger than the posterior medians and close to the
biomass estimates from the model of Ibaibarriaga et al. (2008).

Discussion
Our model is an extension of the model described in Ibaibarriaga
et al. (2008). It follows the same principles: the population
dynamics are described in terms of biomass, with the population
divided into two age classes (recruits and older fish), which
seems to be sufficient to track the main dynamics of the stock.
The model is cast in a Bayesian state-space framework, although
the process error is only incorporated in the recruitment
process. The main difference is the way in which catch is incorpor-
ated. In the previous model, catches were just considered as instan-
taneous removals from the population. This had the effect of
imposing lower bounds on population biomass, particularly on
the estimates of annual recruitment. In the present model,
fishing is considered to be a continuous process separable into

age and year effects, and observed total catch and observed age 1
biomass proportion in the catch are incorporated through obser-
vation equations in each semester. In addition, intrinsic growth
and natural mortality, which previously were encapsulated by a
single parameter, are now disaggregated by process and age class.
Incorporating observation equations based on the average
weight-at-age of the stock allows precise estimation of the
growth rates, and inference on the rates of natural mortality can
then be analysed in detail.

Results from simulated datasets showed good model perform-
ance, being less sensitive to survey catchability and natural mor-
tality assumptions than the earlier model. Estimated recruitment
levels are of the same order of magnitude whether parameters
are estimated or fixed, suggesting that, in general terms, incorpor-
ating stochastic observation equations for catch helps in determin-
ing the population state.

It has been argued that very low exploitation levels or an
absence of catches could help estimating the rates of natural mor-
tality. For instance, Sinclair (2001) obtained estimates of natural
mortality for cod (Gadus morhua) in the southern Gulf of St
Lawrence after the fishery closed in 1993. For anchovy, when
applying the model to simulated data before (shorter year span)
and after (whole year range) a fishery closure, the spread of the
posterior distribution was reduced for the longer time-series,
and the median of the posterior distribution tended to be closer
to the “true” value. However, the same effect was noticed when
considering the whole year range without fishery closure. In
other words, with the model developed here, improvement in esti-
mating natural mortality comes from having a longer time-series
and not from the fishery closure. The reason is that the stochastic
observation equations for commercial catch link the observed
catch to underlying model abundance and the population par-
ameters, including natural mortality.

Estimates of natural mortality from an application to real data
give higher rates of natural mortality for older fish. Similar pat-
terns of recruits growing faster (G1 . G2+) and having lower
natural mortality (M1 , M2+) are also found in ICES (2009b)
for the same anchovy population. Hence, the assumption of a
single parameter jointly accounting for growth and natural mor-
tality and constant across ages seems to be an oversimplification.
Estimating different rates of natural mortality for each age is poss-
ible under the assumption that survey catchabilities are the same
for all ages. ICES (2009b) explored different options, either
fixing survey catchabilities while estimating natural mortality
rates at age, or estimating survey catchabilities at age while fixing
the rates of natural mortality. Trying to estimate all parameters
could lead to additional confounding (Cotter et al., 2004, and
references therein). Other sources or information from other
stocks could be incorporated into a meta-analysis type of approach
(Hilborn and Liermann, 1998; McCarthy et al., 2008) to aid in the
estimation of natural mortality.

One important aspect of the assessment model used is the
information it provides for management advice. With the previous
model (Ibaibarriaga et al., 2008), in which catches were simply
subtracted from the population, management advice needed to
be given in terms of catch and harvest rates (total catch divided
by biomass), whereas the present model allows the use of more-
common terminology, such as fishing mortality and selectivity at
age. The fishing mortality is separated by semester, which allows
better characterization of the fisheries exploiting anchovy. The
fishing mortality on the 2+ age class is greater in the first than
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in the second semester. Moreover, in the first semester, age 1 fish
are less exploited than age 2+ fish (age 1 selectivity ,1), whereas
the opposite happens in the second semester (age 1 selectivity
.1). These results are in accord with knowledge of the fishery
(Uriarte et al., 1996) and are explored in detail in ICES (2005,
2009b), using the SICA model.

The model developed here has allowed estimation of new par-
ameters related to the anchovy stock and fishery dynamics com-
pared with the simpler model described by Ibaibarriaga et al.
(2008). However, with increasing model complexity, the number
of parameters and the cross-correlation between them increases,
demanding more data and longer MCMC runs to obtain accurate
estimates. Computation time therefore increases significantly. The
model in Ibaibarriaga et al. (2008) proved to be good enough to
track the dynamics of the anchovy population, so for routine
assessment it might be sufficient, whereas more-complex
models, such as that presented here, may be used to provide con-
trast from time to time.

In conclusion, it is worth mentioning that the model can also
be used for other short-lived species. On the one hand, its rela-
tively simple age structure (just two age-classes) precludes over-
parametrization while tracking the main recruitment dynamics
(Collie and Sissenwine, 1983; Roel and Butterworth, 2000;
Mesnil, 2003; Roel et al., 2009). On the other hand, this type of
stock is closely monitored using annual fishery-independent
surveys, which provide abundance indices that can be used for
tuning (Barange et al., 2009). The Bayesian framework allows
directly incorporation of uncertainties in the observations that
can be further translated to the calculation of biological risks
when managing the stock (Hilborn and Liermann, 1998).

Supplementary material
The real dataset is available as supplementary material at the
ICESJMS online version of this paper.
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