
The potential use of a Gadget model to predict stock responses to
climate change in combination with Bayesian networks: the case
of Bay of Biscay anchovy
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The European anchovy (Engraulis encrasicolus) is a short-lived pelagic species distributed in Atlantic European waters, with the Bay of
Biscay being one of the main centres of abundance. Because it is a short-lived species, the state of the stock is determined largely by
incoming recruitment. Recruitment is highly variable and depends on a variety of factors, such as the size of the spawning stock and
environmental conditions in the area. The use of a coupled model that could serve to predict the evolution of the anchovy stock in
the short, medium, and long term under several fishing-pressure scenarios and given climate scenarios is demonstrated. This coupled
model consists of a Gadget (Globally Applicable Disaggregated General Ecosystem Toolbox) model that was used to analyse the status
of the Bay of Biscay anchovy population and to simulate future scenarios based on the estimated recruitment levels, combined with a
probabilistic Bayesian network model for recruitment estimation based on machine-learning methods and using climatic indices as
potential forecasting factors. The results indicate that certain combinations of medium to high fishing pressure and adverse environ-
mental conditions could force the stock outside its biological reference boundaries.
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Introduction
Biological characteristics
The European anchovy (Engraulis encrasicolus) is distributed in
Atlantic European waters, but is now considered to be concen-
trated mainly in two well-separated areas: the Bay of Biscay and
the Gulf of Cadı́z (Uriarte et al., 1996; ICES, 2008). Some residual
coastal populations also exist off the Iberian coast and in the
English Channel, Celtic Sea, and North Sea (Beare et al., 2004;
ICES, 2007b).

The European anchovy is one of the most important pelagic
species in the Bay of Biscay ecosystem, along with sardine
(Sardina pilchardus), mackerel (Scomber scombrus), and horse
mackerel (Trachurus trachurus). Anchovy spawn each year in the
Bay of Biscay during spring (Furnestin, 1945; Cort et al., 1976;
Arbault and Lacroix-Boutin, 1977; Lucio and Uriarte, 1990;
Motos et al., 1996), and spawning takes place mainly in areas of
increased biological production potentially, such as river plumes,
shelf and shelf-break fronts, and oceanic gyres (Motos et al.,
1996). Spawning is generally limited to the French and Spanish

coasts (south of 46830′N and east of 58W). Early juvenile stages
start schooling as early as August and are found during summer
and autumn in the southeastern part of the Bay of Biscay (Cort
et al., 1976; Uriarte and Motos, 1991). Interannual variations of
anchovy abundance and distribution are important, but the
relationship between their recruitment and stock size is not
obvious (Massé, 1996; Uriarte et al., 1996, 2002; ICES, 2001).

The fishery
As for many areas of the world with extensive clupeoid fisheries
(Blaxter and Hunter, 1982), anchovy has been one of the most
important species for Spanish and French fleets operating in the
Bay of Biscay. Both the economy of the fleets and the cultural
roots of the surrounding countries have been largely conditioned
by its availability. The Spanish fleets targeting anchovy consist only
of purse-seiners that operate mainly during spring in ICES
Divisions VIIIb and VIIIc (Figure 1). In contrast, French catches
are mainly made by pairtrawlers, but some purse-seiners still
operate in the area. The pairtrawler fishery starts at the beginning
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of the year, and the major fishing areas are Divisions VIIIa and
VIIIb in the first and second halves of the year, respectively
(ICES, 2008). Pairtrawlers are not allowed to fish in Division
VIIIc [European Union (EU), 1998]. French purse-seiners, con-
versely, operate mainly in coastal water during spring, but their
catches are not regular, because their target species is sardine
(ICES, 2008).

Total landings of anchovy have fluctuated over time, peaking
during the 1960s (�83 000 t) and at a minimum level in 2004
(,10 000 t), just before the closure of the fishery in July 2005,
because of the collapse of the stock. This fluctuation in time,
from 1960 to 2010 and disaggregated by country, is displayed in
Figure 2.

Historical assessment and management of the stock
The stock is assessed annually in June by ICES, delivering short-
term management advice to the European Commission (EC). It
is evaluated using a Bayesian two-stage biomass-based model
(Ibaibarriaga et al., 2008), where the population dynamics are
described for biomass with two distinct age groups, recruits or
fish aged 1 year and fish that are 2 or more years old. For these pur-
poses, several sources of fisheries-independent information are
required; they are obtained from different surveys in the Bay of

Biscay. The population is monitored by two annual spring
surveys of the spawning stock: the daily egg production method
(DEPM) and the French acoustic (PELGAS: Campagne
PELagiques GAScogne) surveys have been done regularly since
1989. Both surveys provide spawning biomass and
population-at-age estimates. There is an additional acoustic
survey (JUVENA: juvenile anchovy acoustic survey), which has
been done in autumn since 2003, but it remains under evaluation
(ICES, 2008; ICES, 2009b) and has not been used for this study.

Following the advice given by ICES in June 2009, the EC
retained the closure of the fishery until the end of 2009. In
December 2009, the EC made the same proposal for keeping the
fishery closed until June 2010. However, the Council of Fisheries
Ministers of the EU that met in December 2009 decided to
reopen the fishery for 2010 with a provisional total allowable
catch (TAC) of 7000 t. This decision was undertaken after the
national governments received indications that a better level of
recruitment was entering the population during autumn 2009.

The coupled model
Because it is a short-lived species, the anchovy population depends
strongly on annual recruitment, which in turn depends on
environmental conditions. It is known that environmental

Figure 1. Map illustrating the ICES Areas: the Western European coast (from www.ices.dk).
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conditions and climate play an important role in the recruitment
of fish, in particular of short-lived fish species (Cushing, 1982;
Baumgartner et al., 1992; Alheit and Hagen, 1997; Brunel and
Boucher, 2007; Borja et al., 2008). Successive recruitment failures
since 2002 related to unfavourable environmental conditions in
combination with certain other factors (fishing pressure, changes
in the pelagic ecosystem, etc.) are believed to have been possible
causes for the depletion of the stock (ICES, 2008). Therefore,
the use of environmental and climate information to improve
recruitment predictions could contribute considerably to fishery
management (Schirripa and Colbert, 2005; Planque and Buffaz,
2008).

Many studies using different techniques have been undertaken
to utilize such environmental information to forecast recruitment
(Chen and Ware, 1999; Bailey et al., 2005; Dreyfus-León and Chen,
2007; MacKenzie et al., 2008; Ruiz et al., 2009). Changes in global
and local environmental indices have also been described for the
Bay of Biscay, such as the North Atlantic Oscillation (NAO)
index and Polar Eurasia and East Atlantic patterns (ICES, 2007a;
Borja et al., 2008), as well as upwelling and stratification indices
(Borja et al., 1998; Allain et al., 2001).

Modelling tools need to be robust for management purposes,
and that is exactly the purpose of this study. Recruitment forecast-
ing is problematic because of the great uncertainty (Mäntyniemi
et al., 2009). Machine-learning techniques have been proposed
as an appropriate approach with desirable properties to address
uncertainty (Dreyfus-León and Chen, 2007; Uusitalo, 2007;
Dreyfus-León and Schweigert, 2008; Fernandes et al., 2010) in
combination with expert knowledge. In particular, probabilistic
methods provide estimates of the uncertainty associated with pre-
dictions, as demonstrated by Fernandes et al. (2010). The goal of
the current study was to couple the recruitment model proposed
in Fernandes et al. (2010) with a fisheries population model
(implemented with the Globally Applicable Disaggregated
General Ecosystem Toolbox: Gadget, http://www.hafro.is/
gadget). This coupled model aims to simulate the anchovy popu-
lation dynamics based on forecast environmental and climate vari-
ables. The tool could prove to be valuable in predicting stock status
in the long term and therefore meet the EU’s obligations to pro-
moting long-term sustainable fishing (EU, 2002; Daw and Gray,
2005) and to supporting international agreements such as the pre-
cautionary approach to fishing (FAO, 1995).

Gadget was developed to simulate complicated marine ecosys-
tems, taking into account both the relationships between the

ecosystem components and the effect of human activities on
them. The toolbox has been applied in many ecosystems, mainly
for single-species modelling, but also with some multispecies
examples (Taylor and Stefánsson, 2004; Lindstrøm et al., 2009).
It has also been adopted recently by the ICES Benchmark
Workshop on Roundfish (WKROUND) and the ICES
Benchmark Workshop for Deep-Sea Species (WKDEEP) as the
assessment model for the evaluation of the southern stock of
hake (ICES, 2010b) and the tusk stock in Icelandic waters, respect-
ively (ICES, 2010a). Although Gadget has been used thus far only
for single-stock assessments and this study follows that trend, it
could nevertheless represent a step towards multispecies modelling
in the Bay of Biscay.

Material and methods
The anchovy population analysed is the one concentrated in the
Bay of Biscay area (Figure 1). The area extends from 488N to
44830′N and from 118W to the coastlines of France and northwes-
tern Spain, corresponding biogeographically to a subtropical–
boreal transition zone, as classified by the OSPAR Commission
for the Protection of the Marine Environment of the Northeast
Atlantic (OSPAR, 2000).

A probabilistic recruitment model for anchovy
A methodology proposed in Fernandes et al. (2010) builds a prob-
abilistic model (Langley et al., 1992) in which three levels of
anchovy recruitment (low, medium, and high) could be forecast,
based on a subset of climate or environmental indices. The meth-
odology permits identification of the boundaries of those recruit-
ment levels, based on the method of Fayyad and Irani (1993), in
addition to a small set of climatological variables with low cross-
correlation, which are all highly correlated with recruitment,
based on the method of Hall (2000).

A subset of climatological variables was selected by Fernandes
et al. (2010) from a large set of possible driving or forecasting vari-
ables: a composed climate variable from global teleconnection
indices (CLI1; Bode et al., 2006; Fernandes et al., 2010) and the
local environmental indices in the Bay of Biscay: upwelling
(Borja et al., 1998; Allain et al., 2001) and north–south winds
(Irigoien et al., 2007; Fernandes et al., 2010). Note that CLI1 is
the first component of the principal component analysis of
global climate indices: NAO; East Atlantic pattern; East
Atlantic–Western Russia pattern; Scandinavia pattern; Tropical–
northern hemisphere pattern; Polar/Eurasia pattern. These

Figure 2. Historical international landings of European anchovy by country and year since 1960.
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indices reveal sufficient forecasting power to distinguish between
three levels of anchovy recruitment (Fernandes et al., 2010). To
produce a possible future scenario for climate change, most of
these factor values have been simulated randomly from 2009 to
2020, as is often done with weather generators (Gutiérrez et al.,
2004): the value of a year is based on random variation in the
value in the previous year within the average and limits of past
observed values. However, other climate scenarios could be con-
sidered, and it is hoped that further research on climate models
will allow the use of more reliable climate scenarios in a few
years [Marine Ecosystem Evolution in a Changing Environment
(MEECE), EU project contract no. 212085].

Initially, the spawning-stock biomass (SSB) provided by the
assessment working group (ICES, 2008) was considered as a pre-
dictive variable for the recruitment model. However, the method-
ology followed here discards that information, which is coherent
with the reproductive strategy of a short-life species, based on
spawning thousands of eggs per individual (Motos, 1996). It is
also coherent with the observed historical data in Figure 3 (SSB
and recruitment data for anchovy in the Bay of Biscay), where
very different SSB levels have produced a great variety of recruit-
ment levels for different years. Some of these examples have
been highlighted with an ellipse in the figure. However, although
the SSB has not been introduced as a predictive variable in the
model, it has been considered a limiting factor by setting a
minimum SSB needed to achieve feasible recruitment for the
species (the SSB could not be equal to zero at any point).

The methodology provides probabilistic estimates of a limited
number of recruitment levels (low, medium, and high, i.e. discrete
recruitment values), which is appropriate for decision-making.
However, actual point estimates (recruitment values on a continu-
ous scale) are sometimes needed, such as for integration with
Gadget models. In this context, it would be valuable to be able
to provide a predictive continuous distribution of recruitment,
but maintaining the properties of the model proposed by
Fernandes et al. (2010). This could be accomplished with the
climate factors selected using that methodology, but using original
continuous values of recruitment and climate factors, as well as a
“naive Bayes for regression” paradigm (Frank et al., 2000) instead
of “naive Bayes with discretized variables”. The “naive Bayes for
regression” paradigm is based on the kernel density estimation

paradigm (Silverman, 1986; Wand and Jones, 1995; Pérez et al.,
2009).

A single-species anchovy model using Gadget
The internal structure of Gadget and various potential submodels
and options available are described in detail in the Gadget User’s
Guide (Begley, 2004) and in the Overview of Gadget (Begley and
Howell, 2004).

As a first step, Gadget simulates the population forward, taking
into account both the biological actions in the populations and the
interaction between them. Gadget has a number of possible bio-
logical functions for each characteristic that can be implemented
in the model, as described in the Gadget User’s Guide (Begley,
2004). The way the program deals with all these functions is pre-
sented in the overview of Gadget (Begley and Howell, 2004), and
the functions used in the current model are described below.

As a fisheries model, a submodel in Gadget must also simulate
the fleet. A Gadget “fleet” can be treated as a simplified predator,
implying that it is a “stock” with a single age group and a single
length group, but which does not grow, mature, migrate, recruit,
or reproduce. The only process a fleet contributes to within the
submodel is the consumption of a portion of the stock biomass,
i.e. removing biomass from prey stocks.

The second step in Gadget is to compare the simulated system
with the available data (“real” or observed data), making the
model statistically testable. These data are deemed “likelihood
data” and each dataset used is assigned to a “likelihood com-
ponent”, specifying the statistical relationship to be used when
comparing simulation results with the observed data. The data
used as likelihood components depend on data availability and
the aim of the model. Gadget allows the use of a variety of datasets,
from both commercial fisheries and scientific surveys (e.g. length
distributions, age–length keys, and survey abundance indices;
Taylor et al., 2007). These likelihood components are described
in detail in the Gadget User’s Guide (Begley, 2004), and infor-
mation about how they work and the statistical functions used is
available in the overview of Gadget (Begley and Howell, 2004).
All the components and data used in this study are described in
detail below.

The last step in the Gadget approach is the estimation of par-
ameters using one or more algorithms to optimize parameter

Figure 3. Relationship between SSB and recruitment at age 1 for European anchovy in the Bay of Biscay. The ellipses are the examples of why
SSB is not very efficient at predicting recruitment.
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values iteratively, i.e. those that give the lowest negative
log-likelihood score for the given case study. This overall negative
log-likelihood score gives a measure of how well the resulting
model fits the data used as likelihood components. Three search
algorithms are implemented in Gadget: Hooke and Jeeves
(1961), simulated annealing (Corana et al., 1987), and BFGS
(Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970).
These algorithms can be used either on their own or by combining
them into a single hybrid algorithm (Begley, 2004).

The anchovy model runs from 1987 to 2008 in quarterly time-
steps and covers only a single area: the Bay of Biscay, which corre-
sponds to ICES Divisions VIIIa, b, and c. The main model period
starts in 1994, with earlier years acting as a lead-in period to the
model. The model simulates the anchovy population from age 1
(recruitment) to age 4, which is considered to be a plus group.
The length range considered is 11–21 cm, aggregated in 0.5 cm
intervals. Growth is assumed to follow a von Bertalanffy (1938)
equation:

dL

dt
= K(L1 − L(t)), t [ R+, (1)

and

L(t) = L1(1 − e−Kt), t [ R+, (2)

where L is the length at time t, L1 the asymptotical maximum
length, and K the growth rate. Note that R+ denotes the real posi-
tive numbers. The growth parameters L1 and K have not been esti-
mated by Gadget, but have to be calculated outside the Gadget
model, using data obtained from real observations (A. Uriarte,
unpublished data; L1 ¼ 21.0 cm and K ¼ 0.8). This information
was already available for this species in the database and, to
avoid over-parametrization of the model, it was introduced
directly into the parameters file. Natural mortality is accepted as
constant, using the value used by the assessment working group
(M ¼ 1.2; ICES, 2008). To develop the ecosystem over time,
Gadget requires the addition of the youngest modelled age
group. One way to do this is to add recruits annually into the
youngest age group of the stock. This recruitment is calculated
by the Gadget model each year from 1987 to 2008. From 2009
to 2020, recruitment values are simulated using the probabilistic
recruitment model. Because this model gives a single number
for the recruitment each year, these numbers are then introduced
directly as fixed parameters in the Gadget model, to simulate
forward the population dynamics until 2020. Note that this fore-
cast recruitment series has been recalculated using the historical
series given by the Gadget model, trying to follow the precaution-
ary approach principle (FAO, 1995).

As a fisheries model, a submodel in Gadget must also simulate
the fleet(s). A Gadget “fleet” could be a commercial fleet or a
survey. As mentioned in the previous subsection, this fleet is
treated as a simplified predator (it neither grows, matures,
migrates, recruits, nor reproduces), consuming a portion of the
stock biomass and operating in a single area: the Bay of Biscay.
In this case, we considered one international commercial fleet
and two surveys.

The results of a simulation are then compared with the avail-
able data (observed data), making the model statistically testable.
As mentioned before, Gadget allows the use of a variety of datasets,
both from commercial fisheries and from scientific surveys. In this

case, observed length distributions from the commercial fleet and
the surveys were used.

There are two types of likelihood component in the model—
note that the names of the likelihood components have been
taken directly from the Gadget User’s Guide (Begley, 2004).

1. Catch distribution: used to compare distribution data
sampled from the model and distribution data sampled from land-
ings or survey. These data come from an international commercial
fleet and two surveys. The commercial fleet contains all the French
and Spanish vessels operating throughout the study area and
targets all age groups. The two annual surveys, DEPM and
PELGAS, are carried out on the spawning stock, providing esti-
mates of spawning biomass and population-at-age. The preference
of the fleet for prey from a specific length group L is implemented
in the model with a suitability function (selectivity pattern of the
fleet). In this case, the selectivity pattern of the commercial fleet
follows an exponential L50 suitability function, defined by the fol-
lowing equation:

SP,p(L) =
1

1 + e−4a(L−L50)
, (3)

where L50 is the length where fish have reached 50% selectivity, and
a is a slope constant to be estimated. This selectivity pattern varies
between seasons and is estimated by the model.

Although taken as a total international fleet, containing French
and Spanish vessels, the selectivity parameters of that fleet are
allowed to change quarterly. The modelled selectivity pattern is
displayed in Figure 4, where it is evident that for the first time-step
(called PSE1 in the figure), the model assumes a constant suit-
ability pattern, although it was forced to use the L50 suitability
function (selecting parameter values for the L50 function that
result in an approximation to a flat line). This indicates that all
existing length ranges are caught by the fleet operating in the
study area from January to March. Moving into April, the situ-
ation changes, and only fish larger than a certain length will be
caught by the fleet. Note that PSE2 refers to the fleet that operates
during the second quarter of the year; PSE3 refers to the fleet that
operates during the third quarter, etc.

The selectivity pattern of the surveys was assumed to be con-
stant over all lengths:

SP,p(L) = a, (4)

where a ¼ 1.
The function used to make the comparisons is the sum of

squares:

ℓ =
∑

time

∑

ages

∑

lengths

( ptaL − ptaL)
2
, (5)

where p is the proportion of the observed data sample, and p is the
proportion of the modelled data sample, both for a time–age–
length combination [denoted using the subscript taL in the
above equation]. Note that, because there is no spatial structure
implemented in the model, Equation (5) does not contain a
spatial component.

Predicting the response of Bay of Biscay anchovy to climate change 1261

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article-abstract/68/6/1257/715402 by AZTI FU
N

D
AC

IO
N

 user on 30 M
ay 2019



2. Survey indices: used to compare survey abundance data with
the simulation. The likelihood score is then calculated as

ℓ =
∑

time

(It − (a+ bÎt))
2
, (6)

where I is the survey index, Î the corresponding index calculated in
the Gadget model, and a and b the intercept and the slope of the
linear regression, respectively. In this study, the slope of this
regression is fixed at 1, and the intercept is calculated as a par-
ameter in the model. Here, only a single type of survey index
was used (Taylor et al., 2007), namely the survey indices by age
for the two survey datasets.

Finally, optimization in the iterative reweighting
scheme involves the sequential use of the simulated annealing,
BFGS, and Hooke and Jeeves algorithms. Note that both sets of
likelihood (catch and survey) have the same weight in the overall
likelihood score.

The initial values that Gadget needs for both the recruitment
each year and the initial population in the first year of the
model are chosen arbitrarily, the only constraints being that
there should be sufficient fish in the system (Taylor et al., 2007).

Results
Implementing the probabilistic recruitment model for anchovy
provided a long recruitment time-series for anchovy (hindcast
simulation) that matches reasonably well with the available data,
both from the official assessment group and from the new
Gadget model. This is clear in Figure 5, where three estimated
recruitment time-series have been plotted.

As in Fernandes et al. (2010), there is notable periodicity in
recruitment that coincides with the trend in some of the forecast-
ing variables, particularly with component CLI1. Based on this evi-
dence and the results displayed in Figure 5, semi-random forecast
simulations were carried out to predict recruitment levels in the
long term from the Gadget time-series (Figure 6). The definition
of “long term” depends on the species lifespan; therefore, for a
short-lived species like anchovy, we considered that 10 years (or

three generations) constitute “long term”, consistent with that
used by the group of experts that defined the long-term manage-
ment plan (LTMP) for anchovy (STECF, 2008) and that used in
other related studies (Rademeyer et al., 2007). Figure 7 shows
the time-series of climate indices (i.e. the forecasting factors of
the new recruitment model) from 1987 to 2020. The forecast
simulation of these variables, from 2009 to 2020, was calculated
following the methodology of Gutiérrez et al. (2004). Two
points were highlighted in each of the time-series, corresponding
to the large recruitments predicted for 2012 and 2018.

The results of this recruitment model have been introduced
into the single-species Gadget model that simulates the anchovy
population from 1987 to 2008. Based on those recruitment data,
some projections have been plotted from 2009 to 2020 under
different fishing pressure scenarios. Figure 8 shows the historical
trend in fishing mortality (F) since 1990, as estimated by the
Gadget model. The major decrease in fishing pressure is clear in
this figure, and it corresponds to the decrease in SSB levels, dis-
played in Figure 9. Although the fishery officially closed in July
2005, the catch levels of the earlier years were very low, with
values very close to zero for 2004 (Figures 10–12). Note that
this catch level was estimated by the Gadget model based on the
individuals removed from the system by all fleets, i.e. accounting
for the total removals caused by all commercial fleets and
surveys. Although the total number of vessels has decreased
(ICES, 2008), total fishing effort in the past decade (until 2005)
was higher than during the 1980s and the first years of the 1990s
(STECF, 2008). In addition, there are explicit indications in the lit-
erature regarding the effort that the fishers made just before the
closure of the fishery (ICES, 2005). This means that fishing
effort had been high up to the closure of the fishery and that the
reduction in catch before the closure could not be ascribed to
any reduction in effort.

Anchovy mature at age 1, so the entire population in this study
could be considered mature (age 0 was not included in the model).
Figure 9 shows that the anchovy population was below its precau-
tionary limit (Bpa) from 2004 and that it declined below Blim in the
past year, although the fishery was closed. Note that Blim is the

Figure 4. Selectivity pattern of the commercial fleet estimated by the Gadget model. Each panel corresponds to the selectivity pattern of the
fleet operating at each time-step of the model, PSE1 being the fleet of the first time-step, PSE2 the one corresponding to the second time-step,
PSE3 corresponds to the third time-step, and PSE4 to the fourth one.
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limit reference point for biomass, i.e. the SSB below which there is
a substantial increase in the probability of obtaining reduced (or
“impaired”) recruitment. Below Blim, there is a greater risk that
the stock could collapse. Given that anchovy are short-lived, this
Blim equals Bloss, which is the lowest observed spawning stock
size (ICES, 2003) and was estimated as 21 000 t by the assessment
working group (ICES, 2004). However, the spawning biomass can
only be estimated with uncertainty. Therefore, more conservative
reference points are required, and ICES defines Bpa as the
biomass level where some management action to protect the
stock must be taken, the precautionary reference point for
biomass (Hauge et al., 2007), which is derived from Blim and is
always higher than Blim (Bpa¼ Blim × 1.645; ICES, 2004). The
value 1.645 corresponds to a probability of 5% of the stock actually
being below Blim when a stock is estimated to be at Bpa. The Bpa for
anchovy in the Bay of Biscay is estimated at 33 000 t (ICES, 2004).

Examination of the recruitment simulations indicates that the
decrease in SSB coincided with a period of low recruitment
(Figure 5). Based on the predictions for recruitment, Figure 10
shows what the evolution of this population could be under a

low–medium fishing pressure scenario (F ¼ 0.3), consistent
with continuing the exploitation levels experienced in 2010. In
the SSB graph of Figure 10, we can see that this catch level
would result in a slight recovery of the population, because it
coincides with a high-recruitment year. However, if this fishing
pressure is kept constant and the catch level increases conse-
quently, the population could decline again in a period of low
recruitment.

In a scenario of greater fishing pressure, for example, by
increasing the F to 0.5 (which is relatively low, compared with
the historical average), it is evident from Figure 11 that the popu-
lation would decline below the precautionary limit after each low
recruitment period. However, this would not be evident by exam-
ining only the catch level, which could probably be at the same
levels they were just before the closure of the fishery. The evalu-
ation process in use at that time was not examining the environ-
mental conditions, and it was based only on the SSB level of the
preceding year. According to some earlier studies (Schirripa and
Colbert, 2005; ICES, 2009a), SSB is not a key factor, nor even rel-
evant, for a recruitment forecast. In fact, as explained above, it has

Figure 5. Historically observed recruitment values in biomass (dashed line) compared with the values simulated by the new recruitment
model (solid line) and the recruitment time-series estimated by Gadget as the predictive variable (dotted line).

Figure 6. Long-term recruitment predictions from the new recruitment model.
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not been included as a predictor in the recruitment model, but as a
limiting factor aiming at forcing the model to obtain a zero
recruitment value if the SSB is zero.

If the fishing pressure increases to values comparable with the
first years of the time-series (F ¼ 0.9), where the fishery was at
its maximum level, it is evident (Figure 12) that whenever there
is a period of low recruitment, the stock declines below its precau-
tionary limits. However, total catch levels, although they also
decline considerably, would not indicate poor condition of the
stock.

Discussion
Development of an LTMP is one of the main goals of current
fishery management science. However, predicting population
dynamics of a short-lived species is non-trivial. In addition to

the variables traditionally used in assessment, such as details of
the fishery and stock biology, a consideration of the environmental
and climate conditions is required.

The current study demonstrates a coupled model that could be
used to reach this goal, trying to link the population dynamics of
European anchovy with global and local environmental and
climate variables that have been associated with the recruitment
of European anchovy in the Bay of Biscay. The robustness of the
methodology for selection of environmental factors for forecasting
anchovy recruitment proposed in the first study of Fernandes et al.
(2010) was verified in a second study developed for the ICES
Benchmark Workshop on Short-lived species (WKSHORT) in
2009 (ICES, 2009a). In the latter, several modifications were
made to the database: the anchovy recruitment time-series was
recalculated, more candidate factors were added, and some of

Figure 7. Global and local environmental and climatic components variability from 1987 to 2020: the upper panel illustrates the temporal
variability of the CLI1 index; the middle panel illustrates the temporal variability of the winds in the study area; and the lower panel
corresponds to the upwelling index. For the first period, from 1987 to 2008, the time-series is derived from the literature; for the second period
(from 2009 to 2020), the time-series is from a semi-random simulation, such as usually done in weather generators (Gutiérrez et al., 2004). The
points highlighted in all the forecast-simulated time-series correspond to the years 2012 and 2018.
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the factors earlier used in the estimation procedure were removed,
because they were no longer available. However, some of the same
factors have been selected (upwelling and CLI1), or they have
been replaced by one similar to that eliminated from the analysis.
This was the case for the ICOADS N–S wind annual mean (458N
38W) that was replaced by the FNMOC N–S windstress
annual mean (458N 28W), which was not considered earlier. The
results in both studies are similar, even after incorporating new
data, indicative of the robustness and stability of the methods
used.

To validate the new recruitment model better, a leave-one-out
cross-validation (LOOCV) scheme was used (Monsteller and
Tukey, 1968). This technique involves using a single observation
from the original sample as the validation data, and the remaining
observations as the training data: each observation is predicted
using a model computed using the rest of the data. The result of
this LOOCV analysis demonstrates that the performance of this
model is quite good (Figure 5).

In earlier sections, it was noted that the recruitment time-series
chosen as an observed variable in the recruitment model was the
one estimated by Gadget, instead of the one estimated by the
assessment model. The Gadget time-series and the one modelled
with the current assessment model display similar trends; both
time-series seem to be correlated, but the absolute values are
different: the absolute values estimated by Gadget are lower than
those estimated using the current assessment model (Figure 5).
In fact, the calculated correlation factor is quite high (r2 ¼ 0.88).
Based on that, it may be concluded that under the precautionary
approach (FAO, 1995), the recruitment estimated by Gadget
could be more suitable than the official one; therefore, this one
was selected for the current study. The combination of using
this time-series with the inclusion of new predicting factors (i.e.
the global and local environmental and climatic variables in this
case) will result in a more conservative assessment and conse-
quently in a more sustainable management of this natural
resource. Furthermore, it is noticeable that using the recruitment
time-series predicted with the recruitment data estimated by
Gadget as the observed variable allows avoidance of the big differ-
ences in the large-recruitment estimations provided by the official
assessment model and the recruitment model for the final years of
this period (Figure 5). This difference might be caused by the way
recruitment is estimated in each approach: recruitment is calcu-
lated depending on the biomass level for each year and without
taking into account any climatological variables, whereas in the
recruitment model the approach is totally different, as mentioned
in the earlier sections.

The final recruitment dataset introduced in the Gadget model
as the initial point to simulate the population dynamics is dis-
played in Figure 6. As mentioned before, during the estimation
of this dataset (in the recruitment model), the SSB of the preced-
ing year was only considered a limiting factor, not allowing the
model to calculate any recruitment if this SSB value equalled
zero. This value could be changed for each case study; because
of the uncertainty in the determination of a stock–recruitment
relationship for this study, this was chosen as the best option
here (there was very high recruitment after very low SSB levels
and vice versa in the historical time-series; Figure 3).

Focusing on the recruitment time-series (Figure 6), it is notice-
able that in the forecast simulated period (from 2009 to 2020),
there are two points where recruitment levels are very high, and
they condition and determine the dynamics of the stock under
any fishing scenarios (Figures 10–12). These two points corre-
spond to 2012 and 2018, which have also been highlighted in
Figure 7, where the climate index time-series have been plotted.
Careful examination of Figures 6 and 7 makes it clear that these
periods of high recruitment match a combination of very high
values of the upwelling index and very low values for the
north–south wind index, which in fact correspond to the local
environmental indices. In contrast, the relation with the CLI1
component (the global environmental variable included in this
study) is not clear: for 2012, the value of this index is close to
zero, whereas for 2018 it is high, but not the highest. This suggests
that the local environmental variables are those that affect the
recruitment levels of this species in the Bay of Biscay, whereas
the global variables apparently control the general trend in recruit-
ment, as suggested by earlier studies (Fernandes et al., 2010).

The conclusions all emphasize the sensitivity of this short-lived
species to the environment and climate of the study area. In fact,
after examining the changes in the stock dynamics under the

Figure 8. Fishing mortality values simulated by the anchovy
single-species Gadget model.

Figure 9. SSB time-series simulated by the Gadget model. Biological
reference points are also indicated.
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different scenarios, it seems that fishing pressure is no longer a
conditioning factor, even if it might be crucial under unfavourable
environmental and climate conditions. However, because of the
impossibility of controlling environmental and climate variables,
management of fishing effort becomes essential to avoid depletion
of the stock. Hence, it will be necessary to bear this in mind during

the assessment of this stock, avoiding, for instance, any increases in
TAC based only on the improvement in the observed status of the
stock.

The results of this study also highlight the need for more accu-
rate data to improve the models used in the study, especially data
related to the prediction of real climate scenarios in the Bay of

Figure 10. Simulated stock dynamic parameters in a low-medium fishing pressure scenario (F ¼ 0.3). The left panel displays the SSB, whereas
the right panel illustrates the variability in the catches.

Figure 11. Simulated stock dynamic parameters in a medium fishing pressure scenario (F ¼ 0.5). The left panel displays the SSB, whereas the
right panel illustrates the variability in the catches simulated.

Figure 12. Simulated stock dynamic parameters in a high fishing pressure scenario (F ¼ 1.0). The left panel displays the SSB, whereas the right
panel illustrates the variability in the catches simulated.
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Biscay. This issue is currently being addressed within the frame-
work of several national and international projects, such as the
MEECE European project. In fact, and because of the high depen-
dence of the status of this anchovy stock on climate and environ-
mental conditions, the generation of more realistic climate
scenarios will be key outcomes in obtaining sensible and reason-
able predictions for the dynamics of this stock.

In addition to the uncertainty about future climate and
environmental conditions, the use of a fisheries population
dynamics model also implies the assumption of several uncertain-
ties, which might arise not only from random sampling errors in
the data, but also from model formulation, bias in data collection,
misreporting of catches, and deviations from the agreed harvest
control rules. One way to measure and assess these uncertainties
might be a tool developed by Howell and Bogstad (2010), where
the Gadget model has been linked to assessment models available
from Fisheries Libraries in R (Kell et al., 2007) and management
rules, to allow a full forward simulation of the interacting stocks
in the Barents Sea.

Conclusions
This study demonstrates how a coupled model such as the one pre-
sented here allows for forecasting the evolution of the stock in the
long term, based on the combination of the variables most com-
monly used in assessment and the climate and environmental con-
ditions of the study area. The study is based on semi-random
variation in these conditions, and it could be extended to use
the real variation in the environmental and climatic variables,
downscaled from the projections already available for global
climate parameters. All these results demonstrate that the
coupled model used herein could be useful in evaluating the
anchovy population in a more realistic way. They also indicate
that this approach might be a good tool for short-lived species
generally, i.e. those that depend largely on the environmental con-
ditions of the surrounding areas. Moreover, it could also be used
for species such as hake, although not linked to environmental
conditions to a similar extent as anchovy; hake recruitment has
been demonstrated to be highly dependent on such conditions
(Fernandes et al., 2010).

This study should be considered as a first step towards sustain-
able exploitation of the Bay of Biscay ecosystem, because in
addition to providing a tool for long-term management, it is
also a first step towards developing a tool that might provide
advice for sustainable multispecies management. One extension
of the current study would be to join this model with a similar
one for northern hake and linking them using the trophic relation-
ships identified between the two species in the study area (Mahe
et al., 2007; Velasco, 2007), producing a multispecies Gadget
model where anchovy is consumed by hake in the Bay of Biscay.
Once a multispecies model has been fitted and reasonable results
have been obtained, they might also be ready for use as a multispe-
cies operating model for management strategy evaluation (MSE;
Howell and Bogstad, 2010). The MSE approach has already been
used in the analysis of these two stocks, also including economic
considerations in the analysis. However, there has never been an
attempt to implement the multispecies relationships between
them, and it might prove interesting to ascertain how this relation-
ship might affect the management procedure of the stocks. Parallel
effort should be made in simulating the local and global environ-
mental variables that are currently being studied, and several
climate models are being developed aimed at deriving climate

scenarios soon that are more realistic. The expected result might
well be a good proxy for the integrated assessment that
European member states need to develop following the Marine
Strategy Framework Directive (MSFD) to achieve Good
Environmental Status (GES) in European marine waters by
2020. This might well provide a complete toolbox that will link
some of the current efforts to move towards sustainable use of
available resources of our ecosystem.
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