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The size composition of primary producers has a potential influence on the length
of marine food chains and carbon sinking rates, thus on the proportion of primary
production (PP) that is removed from the upper layers and available to higher
trophic levels. While total rates of PP are widely reported, it is also necessary to
account for the size composition of primary producers when developing food web
models that predict consumer biomass and production. Empirical measurement of
size composition over large space and time scales is not feasible, so one approach
is to predict size composition from environmental variables that are measured and
reported on relevant scales. Here, we describe relationships between the environ-
ment and the size composition of phytoplankton communities, using a collation of
empirical measurements of size composition from sites that include polar, tropical
and upwelling environments. The size composition of the phytoplankton commu-
nities can be predicted using two remotely sensed variables, chlorophyll-a concen-
tration and sea surface temperature. Applying such relationships in combination
allows prediction of the slope and location of phytoplankton size spectra and esti-
mation of the percentage of different sized phytoplankton groups in communities.
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I N T RO D U C T I O N

Global primary production (PP) by marine phyto-
plankton is around 5 � 1010 tonnes C year21 (Carr
et al., 2006), but there are large regional variations in
the proportion of this production being removed
from the upper layer through sinking and therefore
available to higher trophic levels. This is due to vari-
ations in absolute productivity among regions, with
50% of production estimated to come from 27% of

ocean area (Longhurst et al., 1995), and to regional
differences in phytoplankton community structure.
Regionally, the factors that affect the availability of
phytoplankton to a given size class of consumers are
their (i) spatial and temporal distribution, (ii) palat-
ability, (iii) abundance and (iv) size composition [due
to morphological constraints of consumers and
because cell individual sinking rates are related to
size (Smayda, 1971)].
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Marine pelagic food chains are strongly size based,
with larger predators eating smaller prey. This size-
based predation is predominantly responsible for the
transfer of energy from phytoplankton to progressively
larger animals and total production falls with body mass
as trophic level rises (Sheldon et al., 1972). Mean ratios
between predator and prey body mass (predator–prey
mass ratio, PPMR) are relatively constant in marine eco-
systems (Barnes et al., 2010). Consequently, when
primary producers are smaller, there are, on average,
more steps in a food chain to a predator of given size.
Further, since mean annual trophic transfer efficiency at
each step is also relatively constant (Barnes et al., 2010),
production by consumers of a given body size will be a
smaller proportion of PP in regions where the primary
producers are smaller. Such an effect has been shown in
lakes (Sprules and Munawar, 1986), although it has not
yet been reported in large-scale observations in marine
systems (San Martin et al., 2006b).

With knowledge of PPMR and the factors that
influence trophic transfer efficiency, estimates of PP
can be used to predict production at higher trophic
levels (Dickie, 1976). For global scale analyses of the
transfer of energy from phytoplankton to higher
trophic levels, it is often convenient to use PP esti-
mates based on satellite measurements of surface
chlorophyll concentration provided by the Sea-viewing
Wide Field-of-view Sensor (SeaWiFS) global time
series (McClain et al., 2004). Some progress has been
made with estimating phytoplankton cell sizes by
linking phytoplankton absorption to phytoplankton
size classes using a single variable, the optical absorp-
tion by phytoplankton at 443 nm, which can be
derived from the inversion of ocean colour data
(Hirata et al., 2008), but a complementary approach is
to identify general relationships between remotely
sensed environmental variables and the size compo-
sition of phytoplankton communities.

Here, we seek to identify relationships between the
observed size composition of phytoplankton commu-
nities and remotely sensed environmental variables.
Our aim is to use readily available remotely sensed
environmental variables such as surface chlorophyll and
sea surface temperature (SST) to enable estimations of
phytoplankton size parameters for input to models. To
provide a comprehensive description of the size and
relative abundance of cells, we used four descriptors of
community structure: (i) mean mass (log10), (ii) the var-
iance of mass (log10), (iii) the slope of size spectra
[relationship between the logarithm of total abundance
by cell mass and the logarithm of cell mass, irrespective
of species identity (Sheldon and Parsons, 1967)] and (iv)
the range of cell masses that encompass a given

proportion of total biomass or production. This infor-
mation is necessary to predict phytoplankton production
by size class in inputs to size-based models of pro-
duction at higher trophic levels ( Jennings et al., 2008;
Blanchard et al., 2009).

M E T H O D

Abundance and species composition were determined
for phytoplankton in 361 water samples collected at 12
sites: five transects from 488N to 508S in the Atlantic
Ocean [hereafter AMT1-5, n ¼ 125, taken at 7 m
(second samples at each site, taken at the deep chloro-
phyll-a maximum were excluded from this analysis)],
the Benguela upwelling (n ¼ 54), mesocosms in the
Bergen fjord (n ¼ 46), the Irminger Sea (n ¼ 59), Long
Island Sound (n ¼ 7), the North Sea (n ¼ 44), the
Norwegian Sea (n ¼ 19) and the Oregon upwelling (n ¼
7). All included samples were taken in subsurface
waters. See Irigoien et al. (Irigoien et al., 2005) for
details. Subsamples (100 mL) were settled [Utermó́hl
technique (Lund et al., 1958)] and individuals counted
at the species level with an inverted microscope.
Heterotrophic species were excluded from the analysis.
Picoplankton was measured using flow cytometry [see
Irigoien et al. (2004) for details]. Biomass was calculated
as the product of numerical abundance and cell mass.
More details of sample positions, collection, processing
and composition are provided by Irigoien et al. (Irigoien
et al., 2004, 2005).

To assess the proportion of phytoplankton biomass
(B) that was attributable to cells in specified mass (M)
ranges, we expressed cumulative B as a function of M

by fitting:

BcumðMÞ ¼

�
a

ðbþ 1Þ

�
ðMbþ1 � Mbþ1

min Þ�
a

ðbþ 1Þ

�
ðMbþ1

max � Mbþ1
min Þ

(1)

Where b is size spectrum slope, log a is size spectrum
intercept and Mmin and Mmax are the minimum and
maximum M (see Supplementary material for derivation).
Equation (1) was also fitted to cumulative production
(Pcum) at M, where b and log a are the slope and intercept
of the relationship between the logarithm of P at M and
the logarithm of cell mass. The fitted relationships were
used to predict the M ranges that contributed to 10, 50
and 90 of total B or P (Fig. 1). For example,

MB50 ¼ ð
50

100
ðMbþ1

max �Mbþ1
min Þ þMbþ1

min Þ
1

bþ1 (2)
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Since P was not measured directly, we calculated the
net production rate (R) of individuals from M, accounting
for photosynthetic active radiation (PAR) following
López-Urrutia et al. (López-Urrutia et al., 2006):

ln R ¼ lnðNcÞ þ a� lnðMÞ � E � 1

kT

� �

þ ln
PAR

PARþ Km

� �
ð3Þ

where Nc is the normalization constant
(ln(Nc) ¼ 211.28); a is the allometric exponent (a ¼
1.05); E is the activation energy for photosynthetic reac-
tions (E ¼ 0.29) and PAR/(PAR þ Km) the Michaelis–
Menten photosynthetic light response where PAR is the
photosynthetically available radiation at the sample site
and Km is the half-saturation constant (Km ¼ 1.51) that
represents the amount of quanta at which half the
maximum photosynthetic activity is reached. R is
expressed as metabolic rate in mmol of O2 day21 and M

is expressed in pg C, T is the absolute temperature and
PAR is irradiance in mol photons (Einsteins) m22 day21

(2003 PAR values for each sample site were taken from
http://oceandata.sci.gsfc.nasa.gov/SeaWiFS/Mapped/
Annual/par/). Rate in mmol of O2 day21 was converted
to rate in pg of C year21 (molar mass of C ¼ 12.01):

Rate in pg C year�1 ¼ R

12:01
� 365� 1012 ð4Þ

Biomass of each species of phytoplankton in each
sample was calculated by multiplying the abundance by
species mean M. All data manipulation and analyses
were performed using R (R-Development-Core-Team,
2007).

To provide a long-term description of the environment
at the sampling sites, we estimated mean annual SST,
surface chlorophyll-a concentration and PP at each site.
SST data were derived from the Moderate-
resolution Imaging Spectroradiometer (MODIS) aboard
the NASA satellites. Monthly SST averages for 2003 were
extracted through the Jet Propulsion Laboratory physical
oceanography DAAC web portal (http://poet.jpl.nasa.
gov/) and averaged to give a mean annual value at a
scale of 36 km2. Estimates of chlorophyll-a were taken
from Sea-viewing Wide Field-of-view Sensor (SeaWiFS)
data (http://orca.science.oregonstate.edu/1080.by.2160
.monthly.hdf.chl.seawifs.php) by calculating an annual
mean value for each sampling location from data
extracted for each month in 2003. Where no value was
available for a given month at a particular location then
the value from the nearest available location for that
month was used. PP was computed from a wavelength-
and depth-resolved model (Mélin, 2003), building on the
approach of Longhurst et al. (Longhurst et al., 1995). The
main biological input to the models was the surface con-
centration of chlorophyll-a pigment provided by
SeaWiFS (see above). All changes from the implemen-
tation of Longhurst et al. (Longhurst et al., 1995) are
detailed in Mélin (Mélin, 2003). Outputs were calculated
on a 36 km grid. Annual PP was obtained by averaging
positive values (mg C m22 day21) over the number of
available months, except at high latitudes where it was
normalized to 12 (as ocean colour has no good coverage
of wintertime high latitudes, owing to the presence of
cloud cover and sea ice). The mean annual values were
assigned to each station location. When station locations
had to be matched to point locations rather than onto a
grid, we attempted the match in the following order; (i)
number of degrees to one decimal place for both latitude
and longitude, (ii) number of degrees to one decimal
place for latitude, rounded whole number of degrees for
longitude, (iii) rounded whole number of degrees for lati-
tude and number of degrees with one decimal place for
longitude, (iv) rounded whole number of degrees for both
latitude and longitude. All were successfully matched
(split between the four priorities 0, 8, 5 and 87%,
respectively).

For some comparisons, cell size had to be converted
between equivalent spherical diameter (ESD) and M.
For example, a phytoplankton cell with ESD 2 mm has
carbon content of approximately 0.8 pg (20.08 on the
log10 pg scale used in our Figures) using the conversion

pg C year�1 ¼ 0:216� volume0:939mm�3 ð5Þ

reported for taxonomically diverse protist plankton
(Menden-Deuer and Lessard, 2000).

Fig. 1. A graphical summary of the definitions of cell mass ranges
that account for various percentages of biomass and production. MB50

(MP50) is the cell mass at which 50% of biomass (production) is
reached. MB90-10 (MP90-10) is the range of cell masses that make up the
mid 80% [i.e. log10(cell mass at 90%) 2log10(cell mass at 10%) of
biomass (production)].
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Relationships were explored between the remotely
sensed environmental variables PP, SST and chlorophyll-a
and (i) cell mass that accounted for 50% of total phyto-
plankton biomass (i.e. 50% on cumulative biomass
curve) (hereafter MB50), (ii) cell mass range that
included 80% of total biomass (range of cell masses
from 10 to 90% of biomass on cumulative biomass
curve) (MB90-10), (iii) cell mass that accounted for 50%
of total phytoplankton production (i.e. 50% on cumu-
lative production curve) (MP50), (iv) cell mass range
that included 80% of total production (MP90-10), (v)
size spectra slope (b) and (vi) size spectra intercept (a).
Prior to performing ANOVA, where necessary the data
were log-transformed to achieve normality and equality
of variance.

To identify the remotely sensed environmental variables
that best predicted the properties of the phytoplankton
communities, we randomly divided the data into equal-
sized “training” and “predicting” data sets (Tian et al.,
2007). We fitted linear models to the cases in the training
set and then evaluated how well these models predicted
the properties of the phytoplankton communities in the
predicting set. The training set models were of the form:

Y ðtÞ ¼ f ðXðtÞ; uÞ þ error ð6Þ

where the Y(t) variable was related to a function of a
subset of the environmental variables X(t) and the par-
ameters u were estimated by least squares. The models
were assumed to be normally distributed with mean zero
and constant variance. The effect of each variable as a
predictor was tested individually; then each was tested as
the second variable along with the variable previously
identified as the best predictor.

The performance of the training set models was eval-
uated using the prediction data set and we described
performance with the following summary statistic (Tian
et al., 2007):

D ¼ jY ð pÞ � Zð pÞ; û j ð7Þ

where Y(p) are the Y values in the prediction data set and
Z(p) contains the predicted values of Y(p) based on the
training data set model with its estimated parameter vector
û . This statistic can be interpreted as prediction error.

We report the mean values of D from 1000 calculations
based on different random choices of the training and pre-
diction data sets. This approach ensures that our results
are not affected by the selection of training and prediction
data sets. We refer to the mean D as �D and use it to evalu-
ate our models (rather than a summary of the fit of the
model) because we want to use our model for prediction
(models with the best fit often include more variables than

those that give the best prediction). We then investigate
the explanatory power of the best prediction model by
fitting the model to the whole data set.

Applying these relationships in combination allows
prediction of the slope, intercept and location of phyto-
plankton size spectra with respect to M. The location of
the cell mass range is calculated so that the integrated
biomass to either side of the mid-point is equal. Thus
the value for mass at 10% (MB10) is calculated as:

MB10 ¼ MB50
10ðbþ1Þ log10ðMB90�10Þ þ 1

2

� ��1
bþ1

ð8Þ

where MB50 is mid-point mass, b is slope and
log10(MB90-10) is (log10(MB90)– log10(MB10)), the values
predicted by the models. The derivation is shown in the
Supplementary Material. MB90 is then calculated as:

MB90 ¼ 10ðlog10ðMB10Þþlog10ðMB90�10Þ ð9Þ

Equation (1) did not always adequately fit the very vari-
able tails of the cumulative distributions. So, to calculate
100% of cumulative B, the values of MB0 and MB100

were each calculated to incorporate the additional 20%
of integrated biomass.

MB0 ¼ � 5

4
Mbþ1

B50 þ
5

4
Mbþ1

B10 þMbþ1
B50

� � 1
bþ1

ð10Þ

MB100 ¼
5

4
Mbþ1

B90 �
5

4
Mbþ1

B50 þMbþ1
B50

� � 1
bþ1

ð11Þ

The percentage contribution of a particular cell mass to
total community biomass or production can then
be calculated for a given SST and chlorophyll-a. The deri-
vations of the equations are shown in Supplementary
Material.

R E S U LT S

Mean cell mass ranged from 243 pg of C (AMT3) to
4740 pg of C (Bergen fjord) and variance was lowest in
AMT1 and highest in the Bergen fjord (Table I). MB50

ranged from 0.6 pg C (AMT3) to 1314 pg C (Long
Island Sound) and MB90 – 10 ranged from 43 pg C (Long
Island Sound) to 13 438 pg C (AMT4) (Table I). MP50

ranged from 1.1 pg C (AMT3) to 1476 pg C (Long
Island Sound) and MP90 – 10 ranged from 33 pg C (Long
Island Sound) to 18 157 pg C (AMT4) (Table I).

Across all sites the mean size spectra slope was
–1.18, ranging from –1.61 in the Norwegian Sea to
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Table I: Phytoplankton cell mass (pg C) statistics from 12 sites that include polar, tropical and upwelling environments

% AMT1 AMT2 AMT3 AMT4 AMT5 Benguela
Bergen
fjord Irminger

Long Island
Sound

North
Sea

Norwegian
Sea

Oregon
upwelling

Mean cell mass 253 279 243 316 246 912 4740 381 742 788 267 702
1 standard deviation 670 1150 817 941 954 4844 99418 1083 2133 3379 1052 1728
1 standard error 5.5 9.9 6.6 7.3 7.5 28 635 6.4 33 25 14 24
Smallest cell mass 0.1 0.1 0.01 0.01 0.01 0.1 1.0 0.2 1.0 1.0 1.0 0.2
Largest cell mass 8206 27 123 10 686 15 221 27 123 49 930 2 799 208 14 709 27 123 143 195 7000 14 709
Cell mass that accounts for %

of total biomass
10 0.55 0.18 0.018 0.018 0.022 1.2 3.7 0.41 122 2.7 1.3 0.74
25 4.7 0.70 0.052 0.055 0.12 16 18 1.2 454 14 2.3 4.5
50 40 8.8 0.58 0.82 2.6 160 88 11 1314 131 11 70
75 161 79 15 23 36 904 612 136 2878 805 72 781
80 209 123 32 47 61 1292 1221 237 3441 1139 108 1231
90 392 346 188 237 204 2950 7537 793 5291 2352 255 3064

Cell mass range that accounts
for the mid-80% of total
biomass

709 1934 10 471 13 439 9303 2383 2022 1922 43 861 197 4145

Cell mass that accounts for %
of total production

10 0.62 0.20 0.020 0.020 0.031 3.3 7.8 0.45 170 3.4 1.3 0.9
25 5.3 0.95 0.07 0.08 0.30 32.8 33.7 1.6 561 21 2.4 7.1
50 43 12 1.1 1.7 5.7 250 159 16 1476 185 12 112
75 174 103 29 43 57 1207 2120 190 3111 1000 79 1029
80 228 158 59 85 90 1670 4191 318 3702 1373 118 1548
90 454 442 291 365 286 3537 18 409 963 5584 2658 272 3507

Cell mass range that accounts
for the mid-80% of total
production

732 2207 14 500 18 157 9159 1063 2351 2121 33 776 207 3734
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–0.64 in Long Island Sound. Mean intercept (log10 C
pg) was 9.5 ranging from 8.89 in AMT5 to 10.57 in the
Bergen fjord, all P , 0.001 (Table II).

There was a positive linear relationship between MB50

(log10) and both, primary production (log10) and chloro-
phyll-a (log10) and an inverse linear relationship between
MB50 (log10) and sea surface temperature. There was a
positive linear relationship between MB90 – 10 (log10) and
both primary production (log10) and sea surface temp-
erature and an inverse linear relationship between
MB90 – 10 (log10) and chlorophyll-a (log10) but the p-value
for the slope was not significant (Fig. 2 and
Supplementary material Table S1). The production
relationships were similar to those for biomass, except
that the MP90 – 10 (log10) and primary production (log10)

relationship was not significant at the 95% confidence
level (P ¼ 0.93) and both slope and intercept were sig-
nificant for MP90-10 (log10) against chlorophyll-a (log10)
(Fig. 3 and Supplementary material Table S1).

There were significant positive linear relationships
between size spectra slope and the variables primary
production (log10) and chlorophyll-a (log10) and but no
significant relationship between slope and sea surface
temperature (Fig. 4 and Supplementary material
Table S1). Linear relationships between size spectra
intercept (log10) and both primary production (log10)
and chlorophyll-a (log10) were also significant and posi-
tive and there was a significant inverse relationship with
sea surface temperature (Fig. 4 and Supplementary
material Table S1).

Table II: Properties and statistical analysis of normalized biomass size spectra from 12 sites that include
polar, tropical and upwelling environments

AMT1 AMT2 AMT3 AMT4 AMT5 Benguela
Bergen
fjord Irminger

Long Island
Sound

North
Sea

Norwegian
Sea

Oregon
upwelling

No. samples 25 25 25 26 24 54 46 59 7 44 19 7
Mean slope 21.28 21.24 21.18 21.23 21.18 21.16 21.27 21.18 20.64 21.16 21.61 21.03
Mean p-value ,0.001 ,0.001 ,0.001 ,0.001 ,0.001 ,0.001 ,0.001 ,0.001 ,0.001 ,0.001 ,0.001 ,0.001
Mean intercept

(log10 pg C)
9.36 9.28 9.06 9.12 8.89 9.89 10.57 9.61 9.07 9.69 9.59 9.91

Slope coefficient
of variation

20.180 20.097 20.068 20.098 20.093 20.147 20.126 20.110 20.594 20.216 20.168 20.146

Intercept coefficient
of variation

0.035 0.028 0.029 0.026 0.029 0.043 0.044 0.053 0.072 0.073 0.043 0.047

Fig. 2. Relationships between (a) MB50, the mass of phytoplankton cells that account for 50% of total biomass and (b) MB90-10, the range of
phytoplankton cell masses that account for the mid 80% of total biomass and remotely sensed estimates of primary production, sea surface
temperature and chlorophyll-a at 12 sites.
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Prediction results

Prediction models are useful only for application on
large space and time scales when the explanatory vari-
ables are readily available, so we investigated only the
prediction using primary production, sea surface

temperature and chlorophyll estimates as these can
easily be derived from remote sensing.

Chlorophyll-a (log10) and SST together successfully
predicted MB50 and MP50. The ranges MB90 – 10 and
MP90 – 10 were less predictable, although SST could be

Fig. 3. Relationships between (a) MP50, the mass of phytoplankton cells that account for 50% of total production and (b) MP90-10, the range of
phytoplankton cell mass that account for the mid 80% of total production and remotely sensed estimates of primary production, sea surface
temperature and chlorophyll-a at 12 sites.

Fig. 4. Relationships between (a) size spectra slopes and (b) size spectra intercepts and remotely sensed estimates of primary production, sea
surface temperature and chlorophyll-a at 12 sites.
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used to predict both ranges better than just taking the
mean value of all samples. Similarly, the slope of the
size spectrum was slightly more predictable using chlor-
ophyll-a (log10) than just taking the mean value of all
samples. The size spectrum intercept (log10) could be
predicted well using the single variable chlorophyll-a
(log10). The prediction equations are given in Table III
and the statistical results are given in Supplementary
Table Supplementary material Table S2.

Applying these relationships in combination allows
prediction of the slope, height and location of the phyto-
plankton size spectra over relevant size ranges (Fig. 5)
and the make-up of communities by size class (see
Supplementary Material). For example, where SST is
158C and chlorophyll-a concentration is 1.0 mg m23

there is total biomass of 31.8 log10 pg C, of which 13%
is picoplankton (ESD , 2mm), 72% is nanoplankton
(ESD . 2 but ,20 mm) and 15% is microplankton
(ESD .20mm).

D I S C U S S I O N

The analyses reveal that relationships between the size
composition of phytoplankton communities and the
environment can be used to predict mean cell mass, the
slopes of size spectra and the range of cell masses that
encompass a given proportion of total biomass or pro-
duction. Since predictions are based on temperature
and chlorophyll estimates that are available at high res-
olution and over large spatial scales, for example from
remote sensing, they can be used to predict community
size structure at the same scales. Such predictions
provide necessary inputs to models that seek to link PP
to production at higher trophic levels.

Chlorophyll concentration varies due to a variety of
physical and chemical factors. Irradiance over the
mixed layer depth, surface nitrate, SST and latitude and
longitude together can predict 83% of the variation in
log chlorophyll in the North Atlantic (Irwin and Finkel,
2008). We are not here investigating the mechanisms
leading to the correlation between phytoplankton size

composition and chlorophyll; instead, we accept the
practical value of the relationship pending research that
identifies mechanistic relationships. Tight correlations

Table III: Equations for predicting phytoplankton cell sizes from remotely sensed variables

Predicted Value SST (88888C) multiplier
Log10 [chlorophyll-a (mg m23)]
multiplier Constant

MB50 Log10 [cell size (pg C) for 50% of biomass] 20.043 0.929 1.340
MB90– 10 Log10 [cell size range (pg C) for mid 80% of biomass] 0.015 0 2.689
MP50 Log10 [cell size (pg C) for 50% of production] 20.040 0.916 1.432
MP90– 10 Log10 [cell size range (pg C) for mid 80% of production] 0.025 0 2.655
Slope Slope of the size spectrum 0 0.099 21.196
Intercept Log10 (intercept of the size spectrum) 0 0.585 9.704

Fig. 5. Size spectra predictions for (a) a range of sea surface
temperatures at an intermediate chlorophyll-a level of 1 mg m23; (b) a
range of chlorophyll-a levels at 108C and (c) a range of sea surface
temperatures and a range of chlorophyll-a levels. Circle (filled) show
position of MB50, the mass of phytoplankton cells that account for
50% of total biomass. See text for explanation for mid-point
prediction comparison with Agawin et al. (2000).
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between temperature, chlorophyll-a and nitrate concen-
trations are known suggesting that the environmental
factors are highly intertwined and strongly regulate the
phytoplankton average cell size (Chen and Liu, 2010).

Picophytoplankton made up 50% of the biomass at
chlorophyll-a concentrations less than 0.21 mg m23 and
at temperatures over 22.38C. At this temperature, 50% of
production was from cells up to 2.3 mm. These relation-
ships are broadly consistent with the findings of Agawin
et al. (Agawin et al., 2000) who reported that picophyto-
plankton dominated (�50%) where chlorophyll-a con-
centration was lower than 0.3 mg m23 and they reported
picophytoplankton dominating in waters over 268C.
Using our prediction models, which use both tempera-
ture and chlorophyll-a concentration, we estimate that at
268C and 0.3 mg m23 chlorophyll concentration, phyto-
plankton cells up to 1.7 mm diameter (0.55 pg C) make
up 50% of the biomass (Fig. 5c) and up to 2.0 mm diam-
eter (0.82 pg C) make up 50% of the production.

Slopes of phytoplankton size spectra are predicted to
be steeper when total biomass is low but unaffected by
temperature. If the size-spectrum slope is 21, then the
trend is for all size classes to have equal biomass; if the
slope is greater than 21 then biomass tends to increase
with increasing cell mass; if the abundance–mass slope
is less than 21 then biomass decreases with increasing
cell mass. Modellers have often assumed slopes of either
20.75 or 21.0 when describing the size structure of
the phytoplankton community but the model: “b ¼
0.099 log10(chlorophyll-a(mg m23)) 21.196” suggests a
slope of 21.2 at intermediate levels of chlorophyll-a.
There are relatively few empirical estimates of size-
spectrum slope for phytoplankton communities with
which to compare our estimates, as most estimates are
for communities that include zooplankton. However,
those available provide qualitative support for our
results. For example, Marañón et al. (Marañón et al.,
2007) reported that unproductive ecosystems were
characterized by more negative slopes (21.3 to 21.1)
than productive ones (20.8 and 20.6), but the slopes
were rather shallower than reported in our study in
which 11 of the 12 sites had a slope steeper (more nega-
tive) than 21. San Martin et al. (San Martin et al.,
2006a) also found that the slopes of biomass size
spectra for the picoplankton and microplankton size
ranges were positively related to biomass (but the
pattern disappeared with the addition of mesozooplank-
ton). They did not report relationships with
temperature.

Size spectrum slopes as steep as 21.39 have been
reported for pure phytoplankton (Huete-Ortega et al.,
2010). These values, like ours, are much steeper than
the value of 20.75 that is theoretically predicted to

result from the allocation of energy among competing
individuals (Belgrano et al., 2002). Our values are also
steeper than the slope of 20.78 (Li, 2002) and slopes
ranging from 20.74 to 21.06 (Cermeño and Figueiras,
2008) reported for phytoplankton. Differences in slope
could be attributed to sampling artefacts or ecological
processes. Smaller plankton are not effectively sampled
by some gears, are not so well preserved after sampling
and can be under-sampled during microscopic identifi-
cation so we expect that any bias in the data will lead to
the under representation of small cells and lower rather
than higher estimates of slope (Harris et al., 2000). Of
necessity, deriving a size spectrum using mean values
rather than individual mass will introduce bias. Biases
introduced by working with mean mass in studies of
relationships between abundance and body mass are
greatest when working with species that have indetermi-
nate growth and when the range of body sizes con-
sidered is narrow (Jennings et al., 2007). These biases
will be minimal for phytoplankton that have limited
and determinate growth and a range in mean mass that
spans over five orders of magnitude. Since sampling
and analytical artefacts are unlikely to explain why our
slopes are relatively negative, there may be an influence
of ecological processes. For example, consumer density
increases with temperature, leading to increased grazing
pressure (O’Connor et al., 2009), thus the slopes may
increase as a result of greater predation rates on larger
phytoplankton or uniform predation rates that have a
greater impact on larger phytoplankton owing to their
slower turnover times.

Our analyses do not determine cause and effect
and are primarily intended to predict the size compo-
sition of phytoplankton communities from readily
available large scale and high-resolution remote
sensing data to support parameterization of food web
models. However, direct linkages between temperature
and the size composition of phytoplankton commu-
nities have been proposed (López-Urrutia, 2008). He
suggests that large cells may dominate in colder
systems owing to the different temperature depen-
dence of heterotrophic and autotrophic rates. In
colder areas, heterotrophs may not grow fast enough
to control autotrophs, while in warmer areas large
phytoplankton cells are likely to have relatively longer
division times than smaller ones and may not be able
to attain high levels of abundance given the high
abundance of heterotrophic predators. We also expect
community structure to be influenced by nutrient
supply and the colder seas (as represented in the data-
base) often correspond to areas with more nutrients
(e.g. upwellings and coastal areas) than the warmer
ones (e.g. oligotrophic subtropical gyres).
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Other methods are being developed to predict the
size composition of phytoplankton communities at high
spatial resolution over large spatial scales. For example,
Uitz et al. (Uitz et al., 2006, 2008) have determined size
spectra of phytoplankton communities from near-
surface chlorophyll-a concentration using accessory pig-
ments as markers for pico-, nano- and micro-plankton
to infer the column-integrated phytoplankton biomass,
its vertical distribution, and ultimately the community
composition by quantifying on a global scale the phyto-
plankton biomass associated with each of the three algal
assemblages. However, pigment analysis, based on high-
performance liquid chromatography, although a widely
used method for studying phytoplankton community
composition does not provide any information on size
structure in each group (Chen and Liu, 2010).

Our approach can be used to allocate phytoplankton
biomass and PP to cell mass classes and thus improve
the description of the primary producer community in
size-based models that have been used to link PP and
production at higher trophic levels. This is useful because
estimates of phytoplankton production from NPZD
(Nutrient Phytoplankton Zooplankton Detritus) models
and remote sensing rarely provide information on the
size composition of the phytoplankton community alone.
At an SST of 58C, our predictions suggest that the phyto-
plankton cell size at 50% of biomass ranges from 13 to
19 pg C, at 158C it ranges from 5.0–7.2 pg C and at
258C it ranges from 1.8 to 2.7 pg C for intermediate
chlorophyll-a concentrations from 1 to 1.5 mg m23. At
an SST of 58C, the phytoplankton cell size at 50% of
production ranges from 17 to 25 pg C, at 158C from 6.9
to 10 pg C and at 258C from 2.7 to 4.0 pg C over the
same range of chlorophyll-a concentrations. The range of
cell sizes that make up the majority of the community
(the mid-80% of biomass/production) is unaffected by
production but wider at warmer temperatures. One con-
sequence of the dominance of smaller primary producers
in less productive, warmer waters is that food chains will
be longer. The ratio between the sizes of consumers and
their prey (reported as the PPMR) does not depend on
production or temperature (Barnes et al., 2010), so the
mean trophic level of a given size class of consumers
would be expected to be higher in low productivity areas
such as ocean gyres. Since smaller primary producers
are linked to lower PP, but PPMR and transfer efficiency
may be unrelated to the environment, production at
higher trophic levels is disproportionately low when
primary productivity is low.

In addition to predicting fluxes of energy to higher
trophic levels and the biomass of consumer commu-
nities based on measurements of PP and temperature,
our predictive relationships may also be valuable for

predicting how the composition of phytoplankton com-
munities may change in relation to environmental
change. For example, Morán et al. (Morán et al., 2009)
have reported consistent relationships among tempera-
ture, cell size and picophytoplankton abundance and
speculate that the size of cells in phytoplankton assem-
blages will gradually decrease as temperatures rise. Li
et al. (Li et al., 2009) concur that a reduction in commu-
nity average cell size because of an increase in the
abundance of individuals belonging to small-sized
species may be a common response to increasing sea
temperatures. There is evidence that reduced body size
is the third universal ecological response to global
warming besides the shift of species ranges toward
higher altitudes and latitudes and the seasonal shifts in
life-cycle events (Daufresne et al., 2009). Such influences
need to be considered in models that seek to predict
how future changes in PP and temperature will affect
production at higher trophic levels.

CO N C LU S I O N S

The size composition of primary producers is an essen-
tial input to enable estimations of food chain length, con-
sumer biomass and production in any given location. We
have described relationships between the environment
and the size composition of phytoplankton communities
using environmental variables that are easily estimated
from ocean colour satellite measurements. Estimates of
consumer biomass, production and trophic level depend
on the length of food chains that support this biomass, a
consequence of predator–prey size relationships and the
size composition of primary producers. As mean preda-
tor–prey size ratios in marine ecosystems do not depend
on temperature or PP, the size composition of the phyto-
plankton community has an overriding influence on food
chain length which, in turn, can be used to further
explore fish production, fisheries catch potential and the
bioaccumulation of contaminants.
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