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Abstract – The design and evaluation of survey-based management strategies is addressed in this article, using three
case-study fisheries: North Sea herring, Bay of Biscay anchovy and North Sea cod, with a brief history and the main
management issues with each fishery outlined. A range of operational management procedures for the case study stocks
were designed and evaluated using trends that may be derived from survey indices (spawner biomass, year-class strength
and total mortality) with an array of simple and more structured observation error regimes simulated. Model-free and
model-based indicators of stock status were employed in the management procedures. On the basis of stochastic stock-
specific simulations, we identified the following key determinants of successful management procedures: (i) adequate
specification of the stock-recruit relationship (model structure, parameter estimates and variability), (ii) knowledge of
the magnitude and structure of the variation in the survey indices, and (iii) explication of the particular management
objectives, when assessing management performance. More conservative harvesting strategies are required to meet
specified targets in the presence of increasing stochasticity, due to both process and observation error. It was seen that
survey-based operational management procedures can perform well in the absence of commercial data, and can also
inform aspects of survey design with respect to acceptable levels of error or bias in the surveys.

Key words: FLR fishery simulation system / Management strategy evaluation / Fish survey / Fishery-independent
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1 Introduction

A certain number of stocks in Europe are managed by fish-
eries quotas which are set to help achieve the objectives of the
Common Fisheries Policy for the conservation and sustainable
management of fish stocks. The goal of quotas is to control
exploitation via Total Allowable Catch (TAC) limitations. His-
torically, and more particularly in recent years, important re-
ductions of the biomass in several demersal fish stocks have
been observed in European waters. Recent stock biomass de-
clines induced reductions in TAC levels. As a consequence, the
motivation for fishermen to discard, misreport or distort catch
records increased (Cook 1997; Anonymous 2004) so that sci-
entists do not know how many fish have been landed. This can
lead to biases in the catch data, low stock abundance estimates
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by scientists, and even lower TACs, followed by even more
misreporting.

Standard assessment methods are heavily reliant on fish-
eries dependent data, e.g. data on commercial landings and
fishing effort (McAllister and Kirchner 2001; Nielsen and
Lewy 2002; Lewy and Nielsen 2003; Chen et al. 2004; Cotter
et al. 2004). Survey indices are also used in these methods but
their role is to “tune” trends in commercial data (Beare et al.
2005). The concern with these methods is the predominance
of reported catch-at-age data. In fact, as there is a risk of mis-
reporting and as a consequence of bias in the catch data due
to the reduction of TAC levels, the quality of the central data
used in the assessments suggests that this type of assessment
method might generate misleading scientific advice to then be
provided for use in fisheries management, with potential im-
plications for sustainability, conservation and recovery.

Time-series estimates from fish surveys and other fishery-
independent sources may provide better information than those
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based on fishery-dependent sources for managing a fishery, es-
pecially when the available fishery-dependent data are of poor
quality. Biological and spatial survey estimates that can be
used for such purposes are discussed in Cotter et al. (2009);
Woillez et al. (2009).

The concept of Management Strategy Evaluation (MSE)
was developed as a tool in the 1990s by the Scientific
Committee of International Whaling Commission (Kirkwood
1997; IWC 1999; Punt and Donavan 2007; Hammond and
Donovan in press). It was further developed for fisheries
management in South Africa (Butterworth and Bergh1993;
Butterworth et al. 1997; Cochrane et al. 1998; Geromont
et al. 1999; De Oliveira and Butterworth 2004; Johnston and
Butterworth 2005) and Australia (Smith 1993; Punt and Smith
1999; Punt et al. 2001; Tuck et al. 2003; Campbell and
Dowling 2005; Dichmont et al. 2005; Punt et al. 2005). It
can be a powerful tool for assessing the potential performance
of candidate management strategies (Butterworth et al. 1997;
Butterworth and Punt 1999; Punt and Smith 1999; De Oliveira
and Butterworth 2004; Campbell and Dowling 2005) and there
are examples where fishery-independent, survey-based man-
agement procedures have been evaluated and are used in prac-
tice (De Oliveira and Butterworth 2004). The aim of MSE is to
evaluate quantitatively by computer-based simulation the ex-
pected performance (relative to the uncertainties in the system
and for a given set of objectives) of candidate management
strategies prior to implementation.

The research described in this paper was undertaken as a
contribution to the FISBOAT project, which is part of the sixth
framework programme (policy oriented research) funded by
the European Commission. The objectives of this project were
to develop research survey-based tools allowing for fishery in-
dependent assessments and to evaluate the developed tools in
their ability to provide quantitative advice on management op-
tions. With the aim of the FISBOAT project in mind, an evalu-
ation framework is developed that includes the development of
several modelling components (a population dynamics model
(or “operating model”), an observation error model, an assess-
ment model and a harvest control rules model) (Fig. 1) (Hillary
2009). The robustness of management procedures based on
fisheries independent data in stock assessment and fisheries
management will be evaluated using this particular evaluation
framework (FISBOAT 2003).

The objective of this paper is to use MSE to evaluate
fishery-independent management strategies. The implementa-
tion of the MSE in the FLR environment (Fisheries Library
in R) as described in Hillary (2009) is applied to three differ-
ent case studies: North Sea herring (Clupea harengus), Bay of
Biscay anchovy (Engraulis encrasicolus) and North Sea cod
(Gadus morhua). These case studies include species of differ-
ent behaviours (demersal and pelagic) and life spans (long or
short) that entail different survey types (bottom trawl, hydro-
acoustics and ichthyoplankton). In all three cases, traditional
management has not shown convincing results, stressing the
need for an alternative approach. In fact, the spawning stock
biomass of the three case studies used in this work has been
highly fluctuant in the last 25 years and all of them have shown
a decline in recent years (ICES 2006a–c).

Fig. 1. The simulation evaluation platform.

First, we describe the three stocks and fisheries, and how
the FLR operating models are conditioned for each stock.
Then, we set out criteria to be used for assessing the perfor-
mance of the candidate management strategies. Finally, we re-
port results of the simulations, and summarise the general find-
ings. A general discussion concludes the paper.

2 Summaries of fisheries for reference stocks

The three case studies presented here are important com-
mercial species in Europe: North Sea herring, Bay of Bis-
cay anchovy and North Sea cod. At the Rio Earth Summit in
1992 the principle of the precautionary approach was well sup-
ported. The sentence that might summarise it best is “the lack
of scientific certainty is no reason to postpone action to avoid
potentially serious or irreversible harm to the environment”.
This principle is internationally agreed and can be applied to
any marine renewable resource. For the three case studies men-
tioned above precautionary spawning biomass levels have been
defined (BPA and Blim) so as to provide managers with refer-
ence points with which to assess stock status and associated
management actions.

2.1 North Sea herring

The herring fishery expanded in the 19th century but the
rapid development of industrial fishing in the 20th century led
to a collapse of the stock in the 1970s and subsequently, af-
ter a short recovery, in the middle of the 1990s. Since then,
the 2001 cohort was the strongest seen but recruitment has de-
clined since. In 2008, it corresponded to 10% of that estimated
in 2001 (ICES 2008).

Between 1972 and 1995, assessments were performed us-
ing a Virtual Population Analysis (VPA) (ICES 1991) but be-
cause of the uncertainty in the assessment, the ICES Herring
Assessment Working Group (HAWG) switched to an Inte-
grated Catch Analysis (ICA) method (Patterson and Melvin
1996) in 1995. In 2007, ICES classified the stock as “being
at risk of having reduced reproductive capacity and at risk
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of being harvested unsustainably” and estimated the spawn-
ing stock biomass at 1 230 000 t (ICES 2007a,b). Blim is set at
800 000 t and BPA, at 1 300 000 t.

2.2 Bay of Biscay anchovy

Since 2002 the anchovy stock has been at very low levels -
between Blim and BPA set at 21 000 t and 33 000 t, respectively
– with 2005 the lowest point of the historical series. After the
failure of the fishery in spring 2005 the fishery was closed al-
lowing only a provisional quota in spring 2006 and some ex-
perimental fishing with spatio-temporal restrictions in spring
2007. Based on survey and commercial catch data, assess-
ments of the stock using ICA have been conducted by ICES
by the Working Group on the assessment of mackerel, horse
mackerel, sardine and anchovy (WGMHSA) up until 2007 and
by the Working Group on anchovy (WGANC) since then.

The stock has been traditionally managed by a fixed an-
nual allowable catch (TAC). However, since this TAC is set
regardless of the incoming recruitment, which forms the ma-
jor part of the stock, it has little regulatory effect. Furthermore,
in the case of a series of low recruitments, over-exploitation of
the stock could occur rapidly. Currently, the European Com-
mission is considering a long-term management plan for the
anchovy.

2.3 North Sea cod

Cod in the North Sea is the main target species of the de-
mersal fisheries of several European countries, e.g. Denmark,
Germany and the United Kingdom. The stock decreased from
the 1970s leading to a dramatic decline in catches from 1980.
Since the late 1990s, several cod recovery plans have been
adopted with the aim of increasing the spawning stock biomass
(SSB) of North Sea cod above the precautionary limit (BPA) of
150 000 t. However, in 2007, ICES classified the North Sea
cod stock as “being at risk of being harvested unsustainably”
(ICES 2007a) and stock assessment models have estimated a
continuing decline, SSB being well under the 70 000 t limit
(Blim) below which the stock is expected to suffer reduced re-
productive capacity. The extended survivor analysis (XSA) has
been used as assessment method until 2004 and B-Adapt has
been used since.

3 Methods

We describe the modelling implemented for all case stud-
ies within the FLR library and specificities for each case
study are provided for each element of the simulation frame-
work. The terminology used is that employed in the paper by
(Rademeyer et al. 2007). The FLR library (Kell et al. 2007)
was designed as an open-source framework, built within the
R statistical environment, for the design and evaluation of har-
vesting strategies. We use the FLR library to design and test an
array of survey-based operational management procedures for
the given case-study stocks: North Sea herring, Bay of Biscay
anchovy and North Sea cod.

Population dynamics models are based on expert knowl-
edge, available data, assumptions and hypotheses. The “real”
dynamics cannot be known with accuracy and the aim of MSE
is to test the robustness of the strategies based on alternative
hypotheses to these “true” dynamics and to meet requirements
of the precautionary approach to fisheries management. The
link between the “real” and the “observed” systems are ob-
servations that are based on outputs of the operating model
and the implementation of management actions will act on the
“real” system (FAO 1996; Kell et al. 2007). The “real” dy-
namics and the “observed” data on the system are developed
in simulation models. The operating model corresponds to the
“real” system. It simulates the biological dynamics and con-
ditioned (parameters and structure estimated in some way) to
be consistent with the current data and assumptions about the
biology. The “observed” one contains three elements: the ob-
servation error model, the assessment model and the harvest
control rules model, the last two being grouped in the manage-
ment model. The observation error model simulates the ob-
servation of the stocks via surveys, where the level and struc-
ture of the error of observation is, if possible, consistent with
available information. The assessment model (model-free or
model-based) assesses the status of the stock and the harvest
control rules model dictates (given any potential implementa-
tion error) the fishery actions for the next period (thus closing
the loop).

The methods used in this work are the one described
in Hillary (2009), adapted as required for each of the three
case studies. Only a brief description of the methods is pro-
vided here. There are three major components to the op-
erating model: the biological model, the observation error
model and the management model. Each must be conditioned
(Rademeyer et al. 2007) meaning that the parameters (and as-
sociated model outputs) should reasonably reflect the reality
of the system they attempt to simulate (Table 1).

3.1 Operating model

The biological operating model is a yearly, seasonal
(within-year periods permitted), and age-structured stochastic
population and fishery model. The specifics of the model can
be found in Hillary (2009) but at a base level two main pro-
cesses must be parameterised to run the model:

1. The manner (magnitude, uncertainty and timing) in which
recruitment (and its potential relationship with the spawn-
ing stock) occurs.

2. Future selectivity pattern(s) dictating the vulnerabil-
ity/targeting of future age-classes by the fishery.

The biological model permits a wide-range of potential recruit-
ment dynamics (stock-recruit relationship, median recruitment
level with structured noise, bootstrap of historical recruitment
series). For the three case studies considered in this paper an
array of spawner-recruit relationships were fitted to the his-
torical data, using the FLSR class and methods in the FLR
(Kell et al. 2007) main package FLCore. Maximum likelihood
methods are employed to estimate the relevant parameters of
the spawner-recruit (S-R) relationship. While classical model
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Table 1. List of components of the management strategy evaluation for each case study.

North Sea herring Bay of Biscay anchovy North Sea cod
Initial conditions

Age classes 10 (0 to 9+) 6 (0 to 5+) 7 (1 to 7+)
Historical data 1960-2006 1987-2005 1963-2005
Stock weight at age Picked randomly from

the historical data
Average of the historical se-
ries

Average of the historical
series

Natural mortality Constant over time Constant over time Constant over time
Maturity at age Selected randomly

from historical data and
different over time

Constant over time Constant over time

Starting conditions Last historical year – Start to apply the HCR – Start to apply the HCR
immediately in 2006 immediately in 2006
– Start to apply the HCR – Start to apply the HCR
after a fishery closure after a fishery closure
for the 1st 2 years for the 1st 3 years

Stock recruit model
Ricker Fitted for 1960-2006 Fitted for 1987-2005 Fitted for 1963-2005
Hockey stick Fitted for 1960-2006 / Fitted for:

– 1963-2005
– 1998-2005 only (when

recruitment was low)

Selectivity model Logistic selectivity Double normal Logistic selectivity
ogive (2006) selectivity ogive (2005) ogive (1996-2005)

Survey indices SSB, Z SSB, R, Alarm index SSB, Z trend
Observation error

Catchability / = 1 0.3, 0.9, 0.95, 1.2, 1.75, 1.75,
1.75

CV Age specific Ranging from 0 to 1 Ranging from 0.25 to 0.50
Correlation / Uncorrelated Uncorrelated

multiplicative errors, multiplicative errors,
independent and log- independent and log-
normally distributed normally distributed

Autocorrelation Autocorrelation, ageing
error

None None

Bias None None None
Assessment model None None YCC
HCR (see Table 2)
Misreporting 0 < random � 5% None 0, 5, 10, 25%

selection methods may be used to select an optimal relation-
ship the work in this paper considers the various candidate S-R
relationships more as alternative population-dynamic hypothe-
ses and, as such, are all included in the MSE process. Figure 2
shows the observed and predicted S-R relationships for each
case study. The CVs on the SR residuals have been calculated
and vary between 0.35 (North Sea cod with a Hockey stick
SR function fitted between 1998 and 2005) and 0.99 (Bay of
Biscay anchovy with a Ricker SR function). All values can be
found in Figure 2.

The final base requirement is to parameterise the future
selectivity pattern(s). These patterns are permitted to change
over time and vary stochastically if required and are defined by
the user so they are either assumed or estimated in some way.
For all three cases the selectivity relationships were estimated
using historical data. For a given subset of the historical fishing

mortality (F) estimates, these mortalities were normalised by
their maximum to obtain “observed” selectivity patterns:

sOBS
a,y =

Fa,y

max
(
Fa,y

) (1)

This makes the assumption that, for each year, at least one
age-class in the population was fully selected. From these
“observed” selectivity patterns maximum likelihood methods
were then employed using the FLOgive package in FLR to pa-
rameterise the relevant selectivity relationship. Figure 3 shows
the fitted selectivity relationships used for each of the case
studies.
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Fig. 2. Fitted and observed stock-recruit relationship for each case study. Dots: observed values, line: fitted curve. A) Herring with Ricker SR,
B) Herring with hockey stick SR, C) Anchovy with Ricker SR, D) Cod with Ricker SR, E) Cod with hockey stick SR (1963-2005), F) Cod
with hockey stick SR (1998-2005).



82 M. Pomarede et al.: Aquat. Living Resour. 23, 77–94 (2010)

3.2 Observation error model

To evaluate the performance of survey-based harvest con-
trol rules one needs to be able to simulate the survey process
which includes simulating the relevant quantity of the biologi-
cal population observed by the survey and also the uncertainty
(in terms of magnitude and structure) of those observations.
Any observation model should at least look to parameterise
these two base processes. As is the way with the biological op-
erating model an observation error model should also be con-
ditioned on data if available, although it seems that the level of
information required to do this is not always readily available.
What is required is the following:

• A clear understanding of what the survey is “observing” –
is it SSB, recruitment, or perhaps a mixture of easily cate-
gorised population groupings?
• Some information on the uncertainty of the observations,

preferably in terms of precision and potential covariance (if
we have age/length/stage/spatially structured survey data)

For North Sea herring, the only survey simulated was the
acoustic survey (the primary abundance and mortality data
source) and a covariance matrix-at-age for the survey propor-
tions was available (ICES 2001) meaning a full conditioning
of the observation error model was feasible. Following the
approach detailed in Hillary (2009) the delta method is used
to translate the proportions-at-age covariance matrix into the
logit domain, where observation error is then simulated as a
multivariate normal process with the re-sampled survey data
then transformed back through the inverse-logit function (and
renormalised) to generate the survey data with the (approxi-
mately) appropriately covariant observation error. The catcha-
bility index (q) is used for relative SSB and for total mortality
(Z) which (as long as q does not change with time) are un-
affected by the value of q; q = 1 was chosen as in theory,
the acoustic survey is a survey of the whole population cov-
ered (1–9).

For the Bay of Biscay anchovy case study there was no
available information on the precision of the surveys. The ap-
proach adopted was to simulate unbiased observations of the
spawning stock biomass (thus simulating the potential obser-
vations from the acoustic or egg production surveys currently
undertaken) for a range of observation error CVs (assuming
lognormal error in the observations). Secondly, a recruitment
survey was also simulated to offer potential insights as to the
utility of such a survey for survey-based management purposes
if one were feasible/undertaken in the future. In the present
study, as shown in Table 1, the catchability q is set equal to 1.
In the assessment, q for the SSB from the recruitment survey
is taken as 1 (and not estimated) and the q for the SSB from
acoustics is estimated.

In the case of North Sea cod, no direct information on the
precision/potential covariance-at-age of the observation error
in the simulated International Bottom Trawl Survey (IBTS)
was available. The variance in the residuals of the fits of the
IBTS survey in the assessment for North Sea cod was used as
an indicator of the potential level of observation error in the
survey. It should be noted that this is always likely to be an
over-estimator as the noise in these residuals may be consid-
ered as a sum of both observation and process error. Given

these investigations a lognormal coefficient of variation (CV)
of 0.25 (across all age classes) was used as the base-case.
Various catchabilities were tested (Table 1).

3.3 Harvest control rules model

The management model consists of three processes: stock
assessment, calculation of a suitable harvest level via the HCR,
and implementation of the management recommendation(s).

Stock assessment, at least for the purposes of the work
considered here, is anything that uses the data to both infer
stock status and derive quantities for use in the harvest con-
trol rule. Model-based assessments are those which actively
estimate quantities of interest in some statistical fashion with
some underlying population/assessment model. Model-free as-
sessments are where quantities are derived from the avail-
able data but not statistically estimate conditional on a pop-
ulation/assessment model. For example, the year-class curve
(YCC) algorithm (Cotter et al. 2007) is used as a means of
estimating cohort-specific total mortality, assuming a simple
linear structure and represents a model-based assessment. De-
riving total mortality-at-age directly from survey data assumes
the same population model as YCC but is a model-free as-
sessment as the quantities are derived directly from the data,
not “filtered” in some statistical fashion via the population
model. More detailed survey-based assessments do exist such
as SURBA (Needle 2005) but were not available in the FLR
suite of assessments in a stable enough format for use in the
work presented, although their potential utility is discussed
later on.

The key part of the management model is the form of the
harvest control rules considered for the case-studies. Manage-
ment was effected (for all case studies) via alterations in the
TAC for each stock and in consideration of this various HCRs
were considered based on the following general form:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
T ACy+1 = min

{
max

{
exp{u1

y}, exp{u2
y}
}
, exp{u3

y}
}

T ACy

uy = KP ey + KI

y∑
z=y−δ

ez + KD

(
ey − ey−1

)
.

(2)
Here, uy denotes the control signal in year y that is used for
TAC adjustment from year y to the next and in control the-
ory this type of system is known as a PID (proportional, in-
tegral, derivative) controller. The control signal is calculated
from ey, giving the divergence of an index relative to a ref-
erence point. The survey estimate is calculated either directly
from the latest survey or through an assessment conducted in
year y. The desired closed-loop behaviour can be obtained
by tuning the three parameters KP, KI and KD with δ de-
noting the history that is considered in calculating the in-
tegrated/smoothed part of the control signal, ey. The back-
averaging control time-scale δ was set arbitrarily at five years
in all simulations where it was used. It is important to note
that only “moving targets” are considered, i.e. divergence is
always relative to the index in the previous year (Apostolaki
and Hillary 2009). This general formulation was then made
specific for each case study-specific HCR as required and the
details of these specifics are given later in the paper. The three
control parameters of the HCR (KP, KI and KD) can be tuned
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in various ways (O’Dwyer 2003). A common method, named
after Ziegler and Nichols and often applied in industrial engi-
neering, is to first set KI and KD to zero and increase KP until
the output of the control loop starts to oscillate with constant
amplitude. The value of KP at this point is called the critical
gain and can be combined with the value of the oscillation pe-
riod to arrive at standard tunings for KP, KI and/or KD, depend-
ing on whether strictly proportional (P), proportional-integral
(PI), or proportional-integral-derivative (PID) control is desir-
able. Here, KP represents the proportional response given the
control signal, KI is the integral part of the response given
the aggregation (sum) of recent control signals, and KD is the
derivative part of the response driven by the rate at which the
control signal varies. This type of tuning was done only for the
North Sea cod case (applied to deterministic model runs) to
ensure that the number of simulation trials to be evaluated and
summarized did not grow too large to detail in the paper.

The implementation model was decomposed into two pro-
cesses: (1) random implementation error which assumes some
unbiased variation around (2) a specified implementation bias
multiplier i.e. a number set less than, equal to, or greater
than one to simulate over-reporting, unbiased reporting, and
under-reporting, respectively. For the North Sea herring case
a level of mean under-reporting by 2.5% with a further 2.5%
random error was set to simulate small amounts of average
under-reporting but with reasonable uncertainty as to the spe-
cific value of the under-reporting. For the Bay of Biscay an-
chovy study no implementation error was considered and for
the North Sea Cod case study levels of mean under-reporting
of up to 25% were included in some simulation trials.

3.4 Application to the case studies

The various HCRs tested are listed in Table 2. A brief
explanation of the HCRs is provided here and details can be
found in the Appendix.

The first HCR applied to all stocks serves as a reference
scenario and corresponds to the case in which no fishing is al-
lowed (HCR0). The second HCR, also applied to all case stud-
ies, consists on keeping the TAC at a constant level defined by
the latest historical catch level (HCR1). In case of North Sea
herring and Bay of Biscay anchovy, HCRs considered are pure
P-controllers which means that KI and KD are always equal
to zero (Table 2). Also, if no min, max functions are used it
is possible to simplify the Equation (2). By manipulating the
values of KP, KI and KD it is possible to recreate the HCRs
implemented for herring and anchovy (HCR2,3 and HCR6), but
also HCR7 applied to North Sea cod. If min and max functions
are used u1

y, u2
y and u3

y have different values. This is the case
for example in HCR4 and HCR6 applied to Bay of Biscay an-
chovy and North Sea herring respectively. As explained in the
appendix, the aim of the HCR4 is to constraint the variation of
the TAC by a set percentage. The control signal is calculated
and its value is compared to the lower limit of the allowed vari-
ation and the largest value is kept. The later is then compared
to the higher limit of the allowed variation and the smallest is
kept and used in the calculation of the TAC for the following
year. In the case of HCR6, two control signals are calculated
and the smallest is used in the calculation of the TAC.

Contrary to herring and anchovy, in the case of the North
Sea cod case study, various KP, KI and KD tunings were tested
(with δ = 5) and uy values were kept equal to each other, i.e.
no use of min or max functions.

Following the two initial HCRs (HCR0 and HCR1), sev-
eral SSB-based HCRs have been implemented for the three
case studies (HCR2 to HCR5). In most cases, the index used
is based directly on the SSB observations from the sur-
veys (SŜBy). To test the value of the indicator approach, a
binary alarm (Ây) was included in the simulations for the
anchovy (HCR3). When the true population biomass was
below Blim, the alarm was triggered with probability 0.9
(P

(
Ây = 1|SSBy < Blim

)
= 0.9), and when the true population

biomass was above Blim, it was triggered with probability 0.05
(P

(
Ây = 1|SSBy � Blim

)
= 0.05). The alarm operated indepen-

dently of the abundance indices observed. Its purpose was to
modify the HCR to a more restrictive one. This method mod-
ifies TAC according to the relative change in SSB, reducing
the exploitation if an alarm is triggered. The TAC is reduced
automatically by a fraction α in case the indicator triggers an
alarm which depends on the true population biomass. Hence-
forth, the control parameter α can take three values: 0.25, 0.5
or 0.75.

The last three HCRs use indices based on total mortality
rate, either coming directly from observation from the sur-
vey (HCR6 and HCR7) or from the output of the assessment
(HCR8). HCR6 is based on age non-aggregated index. The in-
dex is estimated for 2 age groups of the stock and the minimum
of the two ratios is used in the calculation of the TAC. The aim
of this rule is to try and mirror aspects of the actual decision
rule applied to North Sea herring, but based on total mortality
levels on the juvenile and adult sections of the stock. Values of
the total mortality rate at age at the precautionary level (ZPA)
for each age group derive from other parameter values defined
by ICES (ZPA

[0,1] = 1.12, ZPA
[2,6] = 0.4; see Appendix for details).

Several starting conditions were assumed across the three
case studies:

For the North Sea herring case study, only one starting
condition has been implemented: the first year of projection
is 2007 and starting conditions are those estimated by the
Working Group. For the Bay of Biscay anchovy case study,
two starting conditions have been tested, as shown in Table 1:
(i) start to apply the HCR immediately in 2006 (condition A)
and (ii) start to apply the HCR after a fishery closure for the
first two years (2006 and 2007) to let the population recover
slightly, followed by a TAC of 30 000 t for 2008 (condition B).
Also, for the North Sea cod case study two initial starting con-
ditions have been tested, as shown in Table 1: (i) start to apply
the HCR immediately in 2006 and (ii) start to apply the HCR
after a ban on cod fishery for the first three years (2006, 2007
and 2008) to let the population recover. After this, the HCR
was applied with the TAC in 2009 being modified from the
catch in 2005. A sensitivity analysis showed that when HCR8
is used, the model does not provide the expected results. In
fact, this assessment method may be incapable of fully detect-
ing the signal coming from the survey data in the presence of
observation error and given the restrictions in the model struc-
ture and estimate parameters. These reasons could explain the
behaviour of the model simulations over time. As the SSB is
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Table 2. Harvest control rules (HCR) for each case study. ey: divergence of an index relative to a reference point; North Sea herring, North Sea
cod, Bay of Biscay anchovy; KP,KI and KD: three control parameters of the HCR.

Case study KP KI KD

No exploitation

HCR0: T ACy+1 = 0
Herring 0 0 0
Anchovy 0 0 0
Cod 0 0 0

Constant TAC

HCR1: T ACy+1 = T ACy

Herring 1 0 0
Anchovy 1 0 0
Cod 1 0 0

SSB-based

HCR2: ey = log

⎛⎜⎜⎜⎜⎝ SŜBy

SŜBy−1

⎞⎟⎟⎟⎟⎠
Herring 1 0 0
Anchovy 1 0 0
Cod 0.48 0.069 0.84
Cod 0.48 0.027 0.84
Cod 0.4 0 0

HCR3: ey = log

⎛⎜⎜⎜⎜⎝α(Ây)
SŜBy

SŜBy−1

⎞⎟⎟⎟⎟⎠ Anchovy 1 0 0

HCR4: ey = min

⎧⎪⎨⎪⎩max

⎧⎪⎨⎪⎩log

⎛⎜⎜⎜⎜⎝ SŜBy

SŜBy−1

⎞⎟⎟⎟⎟⎠ , log 0.8

⎫⎪⎬⎪⎭ log 1.2

⎫⎪⎬⎪⎭ Anchovy 1 0 0

HCR5: ey = log

⎛⎜⎜⎜⎜⎜⎝ SSBy

SSBy−1

R̂y

R̂y−1

⎞⎟⎟⎟⎟⎟⎠ Anchovy 1 0 0

Z-based

HCR6: ey = min

⎧⎪⎪⎨⎪⎪⎩log

⎛⎜⎜⎜⎜⎜⎝ ZPA
[0,1]

Ẑy−1,[0,1]

⎞⎟⎟⎟⎟⎟⎠ , log

⎛⎜⎜⎜⎜⎜⎝ ZPA
[2,6]

Ẑy−1,[2,6]

⎞⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ Herring 1 0 0

HCR7: ey = log

⎛⎜⎜⎜⎜⎝ Ẑy

Ẑy−1

⎞⎟⎟⎟⎟⎠ Cod

HCR8: ey = log

⎛⎜⎜⎜⎜⎜⎝ Zy

Zy−1

⎞⎟⎟⎟⎟⎟⎠
Cod 0.32 0.02 0
Cod 0.35 0 0
Cod 0.175 0 0

very high, in theory, catch should be possible but this model
predicts a collapse of the fishery, i.e. catch almost null. In fact,
with YCC, Z is constant over ages and the total mortality is
cumulative. As YCC does not estimate an age-dependent Z,
a high level of implementation error will have a larger ef-
fect on the older ages given differential selection. In fact, in
theory, the total mortality-at-age for a given year is equal to
the sum of the natural mortality-at-age and the product of the
fishing mortality for this given year and the selectivity-at-age
(Zy,a = Ma + Fy × sa). When YCC is used as an assessment
method and as the level of implementation increases the fish-
ing mortality increases towards a value of 1. As the fishing
mortality tends to 1, the total mortality-at-age will become al-
most independent of the age structured (Zy,a ≈ Zy). As a con-
sequence and to limit this behaviour of the model over time, it
had been decided to impose the closure of the fishery over 3
years for all simulations using the HCR8.

In terms of projections, the number of years is different
for each case study. The generation time of North Sea herring
is about 10 years, and the recent history of the stock has in-
cluded two periods of major depletion over the last 40 years
(a major crash occurred in the late 1970s and a minor one in
the middle 1990s). Based on these observations, it is assumed
that 10 years can be considered as a medium term simulation.

In order to provide a strong basis for understanding long-term
performance, all simulations were run for 20 years (2 gener-
ation times). In each of the runs for the Bay of Biscay an-
chovy stock, the population is projected forward for 10 years
(3 generations). In the case of North Sea cod, the simulation
period was fixed at 30 years, corresponding to approximately
five generations. In all the case studies, performance statistics
were calculated on the basis of 100 Monte Carlo iterations.

4 Performance statistics

Performance statistics were defined to summarise the re-
sults from the simulations and to evaluate the performance of
the different HCRs. The statistics were related to the manage-
ment objectives set for each of the stocks and fell into two
groups:
a) Performance statistics related to the state of the stock

• Probability that spawning stock biomass (SSB) is below
some biomass reference point, Bref, at least once in the
time series;
• Probability that SSB is below some biomass reference

point, Bref in the final year;
• Number of years necessary to get SSB above Bref.
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b) Performance statistics related to yield

• Average catch over all years and iterations;
• Median percentage of inter-annual change in TAC.

5 Results

5.1 Basic validation of the management strategy

The first test of the management evaluation framework is
to project the stock without catches and then with constant
catches to obtain something with which one can compare the
alternative dynamic management strategies. For the simplest
comparative HCR (HCR0) applied to all case studies, we see
stock growth (as we would expect given the dynamics) for no
catch taken – under the obvious assumption that the stock-
recruit, growth, maturity and natural mortality dynamics are
unchanged in the near future. In the case of anchovy, even if
the simulations start from the lowest level of the population
observed since 1987, the stock recovers rapidly, getting in four
years to the highest SSB in the series.

The second HCR (HCR1) evaluates the impact of a fixed
annual TAC (set as the last historical catch) on the stock. In
both the herring and cod cases, results show that, conditional
on the parameterization of the model, the current official catch
level (reported landings and estimated discards) is sustainable
if compliance can be enforced. In fact, because the TAC is not
adjusted in response to a change in the SSB and maintained at
a level which does not compensate the growth of the stock, the
harvest rate declines. This case is useful in the sense that the
most recent catch may act as a benchmark given that catches
of this level afford stock growth. With regard to anchovy, the
traditional management procedure with a fixed annual TAC re-
sulted in a high risk of stock collapse even if the stock was not
over-exploited before the application of the TAC.

5.2 SSB-based harvest control rules

Several HCRs based on SSB survey indices have been im-
plemented and tested. In the case of HCR2, which is applied to
the three case studies, various outcomes may be expected due
to different initial stock levels for the three case studies, the
lack of a specific reference point in the HCR, and the different
life-histories involved.

In the case of North Sea herring, we expect to see a de-
crease in the SSB in the first years of the projection (given
the weak year-classes of 2002 and 2003 moving through the
mature population) followed by an increase and then a ten-
dency to equilibrium. In fact, the SSB starts by decreasing in
the first two years of the projection. It then increases for five
years until it reaches quasi-equilibrium levels – values being
well above BPA – as catches have been reduced. In fact, the
TAC follows the trend of the SSB with a delay induced by the
way TAC is calculated. During the last 13 years of the pro-
jection, the SSB is not constant due to the uncertainty in the
system. Over the 100 iterations, the probability of being below
Blim at least once in the projection is zero. The change of the

Table 3. Performance of the harvest control rules tested. KP,KI and
KD: three control parameters of the HCR: # KP = 1, KI = 0, KD = 0
in all HCRs considered; * KP, KI , KD: variable tunings considered.
Performance of HCR in attempt to stabilise catches at an approximate
historical level: (–), (+), or (++).

Bay of
North Sea Biscay North Sea
herring # anchovy # cod

No exploitation
HCR0:

√
(NA)

√
(NA)

√
(NA)

Constant TAC
HCR1:

√
(NA)

√
(NA)

√
(NA)

SSB-based
HCR2:

√
(++)

√ √∗ (++)
HCR3:

√
(+)

HCR4:
√

(+)
HCR5:

√
(++)

Z-based
HCR6:

√
(++)

HCR7:
√∗ (-)

HCR8:
√∗ (++)

stock-recruit function (Ricker instead of a segmented regres-
sion) resulted in very small changes in the final SSB – being
slightly smaller with a Ricker stock recruit function – and a
very small increase in the probability of being below Blim at
least once in the projection (0.01 instead of 0). The probabil-
ity of being below BPA in the final year increases from 0 to
0.03 with the change of stock recruit function from hockey-
stick to Ricker (Fig. 4A). Catches decrease for the first two
or three years and then increase and stabilise. Due to the be-
haviour of the different stock-recruit functions, average catch
over all projected years is higher when a hockey-stick relation-
ship is assumed than with a Ricker one (Fig. 4B, Table 4). The
CV in the TAC in the final year is equal to 0.264. The use of
a Ricker model implies smaller values of TAC in the final year
as the TAC is related to the SSB and a slight increase in the
value of the CV in the TAC (Table 3).

When this HCR is applied to anchovy, the results obtained
are noticeably different. When the observation error CV of the
SSB index is 25%, the probability of SSB being below Blim

at least once in the 10 years of projection is 0.11 and takes
less than 1 year on average to get the population back above
Blim. Based on the low starting level (starting condition A), this
means that the population starts outside the biological limits
but recovers rapidly at low exploitation levels (4000 t) mini-
mizing the depletion probability. The CV of the SSB index has
not an influence on the state of the stock, probably due to the
low exploitation levels. However, the larger the CV, the larger
the TAC and its variability. Similarly, when the rule is tested
by starting the simulations after two years of fishery closure
and an initial TAC of 30 000 t (starting condition B), the prob-
ability of SSB being below Blim at least once in the 10 years
of projection raises to 0.53, needing 2 years on average to get
the population back above Blim. In comparison with the other
initial conditions, the average actual catch is larger (approxi-
mately 29 000 t) and the inter-annual change in TAC is centred
on zero. In this case, the effect of increasing the CV of the SSB
index leads to increasing number of years required to recover
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Fig. 3. Fitted (full line) versus stock assessment-derived “observed”
selectivity (circles) for each case study. A) Herring, B) Anchovy, C)
Cod.

from stock depletion and increasing probability of the TAC be-
ing larger than the exploitable stock (Table 3).

With regard to the other HCRs applied to anchovy, perfor-
mance of all the HCRs except HCR6 depended on the starting
conditions, A or B, and especially on the starting TAC (Fig. 5,
Table 5). Starting from the current stock situation with a very
low TAC (condition A) resulted in stock rebuilding and a slow

Fig. 4. Performance statistics for different stock recruitment func-
tions, harvest control rules and levels of misreporting for North Sea
herring. A) Summary of risk of biomass, B < BPA, B) Summary of
average catch (×103 tonnes) over all projected years.

Table 4. Simulations 1 to 12, North Sea herring.

Simulation HCR Stock- Misreporting
recruitment

1 1 Ricker No
2 1 Hockey stick No
3 1 Ricker Yes
4 1 Hockey stick Yes
5 2 Ricker No
6 2 Hockey stick No
7 2 Ricker Yes
8 2 Hockey stick Yes
9 6 Ricker No

10 6 Hockey stick No
11 6 Ricker Yes
12 6 Hockey stick Yes
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Fig. 5. Performance statistics for different harvest control rules, initial
conditions, CVs for indices (SSB and recruitment) and levels of alarm
trigger for Bay of Biscay anchovy. A) Summary of risk of B < Blim,
B) Summary of average catch (×103 tonnes) over all projected years.

increase in catches. However, closing the fishery for two years
and then starting with the usual TAC of 30 000 t in 2008 (con-
dition B), tended to favour high catches in the first years of the
projection and resulted in a slightly decreasing rate in the pro-
jected SSB. The use of the juvenile abundance index, through
the use of the simulated recruitment index, in HCR6 allowed
adjustment of the TAC with better knowledge of the state of the
stock in the forthcoming years. This led to larger catches while
keeping the probability of the stock falling below the relevant
reference points relatively low (below 20%). The incorpora-
tion of an alarm triggering indicator with a highly risk-averse
reduction factor provided better protection against stock de-
pletion than HCR2. As a consequence, the level of catch at the
end of the projection was smaller when HCR3 was considered
(Table 3).

Table 5. Simulations 1 to 18, Bay of Biscay anchovy. Initial condi-
tions: A) start to apply the HCR immediately in 2006 and B) start
to apply the HCR after a ban on stock fishery for the first two years
(2006 and 2007). α: control parameter of the HCR.

Simulation HCR Initial CV SSB CV α
condition index recruitment

index
1 1 A / / /

2 1 B / / /

3 2 A 0.25 / /

4 2 A 0.75 / /

5 2 B 0.25 / /

6 2 B 0.75 / /

7 4 A 0.25 / /

8 4 A 0.75 / /

9 4 B 0.25 / /

10 4 B 0.75 / /

11 5 A 0.25 0.3 /

12 5 A 0.25 0.9 /

13 5 B 0.25 0.3 /

14 5 B 0.25 0.9 /

15 3 A 0.25 / 0.25
16 3 A 0.25 / 0.5
17 3 B 0.25 / 0.25
18 3 B 0.25 / 0.5

When considering HCR2 for North Sea cod, using a
“hockey-stick” stock recruitment function fitted to SSB and
recruitment data for 1998-2005 only, or a Ricker-type stock re-
cruitment function, both resulted in an increased risk of stock
collapse (Fig. 6A). The low level “hockey-stick” stock recruit-
ment function gave a probability of having a TAC above the
Exploitable Stock Biomass (ESB) of 0.03, while the Ricker-
type stock recruitment function gave a probability of 0.2. Both
simulations had significantly reduced catches: 132 000 (stan-
dard error, SE 22) and 298 000 (SE 59) t, respectively (Fig. 6B)
with corresponding inter-annual TAC CVs of 0.32 and 0.41.
The lower level of recruitment in the alternative “hockey-
stick” stock recruitment function significantly increased the
time to stock recovery (SSB 95% of being above BPA as of
2014).

In terms of recruitment, a slightly different shape is ex-
pected depending on the stock recruitment relationship as-
sumed. If a hockey stick relationship is assumed, the recruit-
ment stays constant all along the projection once the threshold
SSB has been reached. In the case of a Ricker relationship,
the recruitment begins to decreases due to the compensatory
nature of the relationship. The harvest rate is kept relatively
constant over time with a small decline in the first years of the
projection due to the decline of catches, given the declining
SSB trend in this period.

The consideration of the random misreporting varying be-
tween 0 and 5% has an important impact on the SSB in the
projection. In fact contrary to previous thought the SSB in-
creases between 2007 and 2015 and then decreases until the fi-
nal year of the projection to reach values smaller than without
misreporting. The final value is above the reference points but
the probability of being below those values is not negligible
and reaches 0.2 for the probability of being below Blim at least
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once in the projection and 0.4 for the one of being below BPA

in the final year, when either stock-recruitment relationship is
assumed.

5.3 Total mortality (Z-based) harvest control rules

For the herring and cod case studies age-structured in-
dices are simulated and this makes it possible to (potentially)
estimate total mortality (Z) for the relevant age classes ob-
served in the surveys. The Z-based HCRs are detailed in Table
3 (HCR6 to HCR8) and the appendix. For North Sea herring
HCR6 was used to attempt to roughly approximate the current
management procedure used for this stock (an F-based strat-
egy concerned with juvenile (0–1) and adult (2–6) animals).
The precautionary levels of Z were derived by simply adding
the appropriate level of natural mortality (averaged over the
relevant age classes) to the precautionary levels of F as defined
by the Working Group. For North Sea cod a simpler yearly
mean Z was used as the control variable of interest in the HCR
(HCR7,8) but this mean Z was both estimated from the raw sur-
vey data (model-free) and estimated using the YCC approach.

For the case of the herring the Z-based rule displayed a
much more reactive and precautionary dynamic than the SSB-
based HCRs. Figure 4A shows how the total mortality HCR
manages to keep the stock well away from precautionary lev-
els over the whole management simulation period. The reac-
tive nature of this rule, relative to those based around SSB, is
not surprising given that this rule will obtain information on
changes in the stock much faster than an SSB-proxy signal
would. Given changes in year-class strength and observation
error one can expect relatively strong changes in the levels of
Z observed on especially the juvenile portion of the stock, even
though in this case juvenile mortality is effectively a mean of
the total mortality felt by ages 0 and 1. While these variations
may tend to be smoothed as the index observes the mature por-
tion of the stock (ages 2–6) total mortality is still a more reac-
tive and potentially informative index than simply the SSB in
any given year. The apparently more precautionary action of
the HCR also stems from its definition:

• The TAC will only be increased if both the juvenile and
adult mortality levels are below their respective precau-
tionary levels, and then only by the smallest ratio of ZPA/Z.
• The TAC will be decreased if only one of the mortality

levels is above their respective precautionary levels and if
both are above then the decrease in TAC will be by a frac-
tion equating to the smallest ratio of ZPA/Z.

A major criticism of the use of reference points in HCRs is
that they themselves are often derived from parameters such as
the stock-recruit parameters, growth and in particular natural
mortality, which can often be poorly estimated and/or highly
confounded. The notion of a precautionary level of total mor-
tality is used in the HCR6 and these juvenile/adult ZPA levels
are themselves derived from FPA and M. The reasons for doing
this were two-fold:

• The use of these ZPA levels and the particular form for the
HCR were an attempt to mimic certain features of the cur-
rent agreed HCR

Fig. 6. Performance statistics for different stock recruitment func-
tions, harvest control rules, initial conditions, survey noises, K pa-
rameters and levels of misreporting for North Sea cod. A) Summary
of risk of B < BPA, B) Summary of average catch (×103 tonnes) over
all projected years.

• It is our contention that using Z and not F-based refer-
ence points are much less prone to the problems usually
attributed to such reference points and are, as such, defen-
sible for use within a HCR. The estimation of reference
points such as FPA (and not FMSY) is usually the estima-
tion of a level of total mortality that acts to reduce the stock
(assuming equilibrium) below biologically safe levels - in
essence it only becomes FPA when one assumes a certain
M vector for the age classes. Thus, when one reconverts
FPA back to ZPA (using the M one assumed in the first
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Table 6. Simulations 1 to 14, North Sea cod. Stock-recruit relationships: Ricker Hockey stick (HS) fitted between 1963 and 2005 then, between
1998 and 2005. Initial conditions: A) start to apply the HCR immediately in 2006 and B) start to apply the HCR after a ban on stock fishery for
the first three years (2006, 2007 and 2008). KP, KI and KD: three control parameters of the HCR.

Simulation HCR Stock- Initial Survey KP KI KD Misreporting
Recruitment condition noise

1 1 HS 1963-2005 A Estimated 1 0 0 0
2 2 HS 1963-2005 A Estimated 0.48 0.027 0.84 0
3 2 HS 1963-2005 B Estimated 0.48 0.027 0.84 0
4 2 HS 1963-2005 A Doubled 0.48 0.027 0.84 0
5 2 HS 1963-2005 A Estimated 0.48 0.027 0.84 25%
6 2 HS 1998-2005 A Estimated 0.48 0.027 0.84 0
7 2 Ricker A Estimated 0.48 0.027 0.84 0
8 2 Ricker A Estimated 0.4 0 0 0
9 8 HS 1963-2005 B Estimated 0.315 0.02 0 0

10 8 HS 1963-2005 B Doubled 0.315 0.02 0 0
11 8 HS 1963-2005 B Estimated 0.315 0.02 0 25%
12 8 HS 1998-2005 B Estimated 0.315 0.02 0 0
13 8 Ricker B Estimated 0.315 0.02 0 0
14 8 Ricker B Estimated 0.175 0 0 0

place) there is less dependence on the factor that was the
most unknown: natural mortality.

Current catch levels result in levels of juvenile Z quite above
their precautionary levels, given the estimated current popu-
lation numbers and assumed selectivity function, and the de-
crease in the mature stock as a result of the low recruitments
in the early 2000s also results in higher Z levels on the adult
stock. Both these initial dynamics result in a rapid reduction in
the TAC from current levels. This results in a strong increase
in the SSB (after the initial dip given the low recruitments)
and once the levels of Z (proxies for F in effect) have de-
creased below the trigger levels in about 2014 the TAC begins
to gradually rise to just under recent levels after 20 years, all
the while maintaining a low exploitation rate and lower inter-
annual variation in the TAC than that observed using the SSB-
based rules (Fig. 4B). One further observation based upon re-
sults not detailed in this paper is that the Z−based rule was
more affected by alternate levels of observation error (in com-
parison with the SSB indices) becoming more reactive and
resulting in more uncertain future stock and catch dynamics.
This again stems from the fact that the SSB index is derived
from age-structured acoustic data but the observation error is
smoothed over the age-classes which does not happen to any-
where near the same degree when using the raw survey data to
estimate Z in this manner.

For North Sea cod the PID tuning method was again em-
ployed to estimate an optimal HCR from the general HCR de-
fined in Equation (2). When using a model-free estimate of
annual mean Z (estimated directly from the survey), it was not
possible to determine the value of KP where the output of the
control loop started to oscillate. Consequently, it was not possi-
ble to obtain a convergent set of tuning parameters and model-
free Z-based HCRs were not considered viable within the PID
paradigm. However, PID control was possible when using the
YCC method, but only if a closure of the fishery is consid-
ered in the three first years of the projection, as explained ear-
lier. Before addressing the reasons for this dynamic, the per-
formance of the YCC-based HCR is detailed. In the absence

of reporting bias (misreporting) and for the more “optimistic”
stock-recruit regimes (based on the full data set, not the 1998-
2005 subset) the Z-based rule performed well in terms of stock
rebuilding, and low inter-annual variation in TAC – better than
the SSB-based rules (Fig. 6A). Also the results were largely
insensitive to increasing the observation error CV to 50% –
mean levels of catch were the same with a higher variation in
TAC and no added risk of stock collapse (Fig. 6B, Table 6).
Using the truncated stock-recruitment data resulted in high
risks of stock collapse (more so for the Ricker model) with
catch becoming increasingly likely to be almost equal to the
exploitable stock biomass in these cases.

6 Discussion

In the present work, several harvest control rules based on
fishery independent data have been tested on three fish stocks
with different biological characteristics (herring, anchovy and
cod).

For North Sea herring, simple HCRs based upon changes
in a single age-aggregated SSB index derived from the acous-
tic survey annually undertaken for this stock were reasonably
capable of increasing the future SSB significantly above pre-
cautionary limits (p < 0.05) as well as increasing future TAC
levels. The primary robustness test in these cases was the in-
clusion of covariant observation error in the acoustic survey
(defined using actual survey variance information) and process
error in the form of stochastic future recruitment. A Z-based
HCR was also tested and proved to be a more conservative
HCR – the size of the SSB increase was larger than that seen
for the derived SSB trend HCRs and with an initial decrease
in TAC followed by an eventual increase in TAC as the stock
abundance increased. The Z-based HCR gave future median
TAC levels below the current level. Not only does this HCR
work with variables (age-specific mortalities) which experi-
ence stronger variation over time (in the presence of observa-
tion error and stock recruit variation) than SSB/age-aggregated
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indices but it also has both specific reference points and an im-
plicit precautionary element. Once the SSB has increased, the
TAC decreased and these weaker initial cohorts grow out of
the age range under consideration (0–6) the incoming stronger
cohorts cause a decrease in total mortality and a subsequent
increase in the TAC although never back above current catch
levels. Inter-annual variation in TAC was noticeably less in the
case of the total mortality HCR and this particular effect seems
at least in part driven by the presence of reference points in the
total mortality HCR. In the SSB trend HCRs there are no target
or limit reference levels, merely an adaption of the TAC as the
mature biomass dynamics unfold. With the Z-based HCR there
are effective target levels of total mortality for the juvenile and
mature populations. This HCR acts to swiftly reduce the TAC
to get to the population to these target levels then stabilises
the TAC to maintain the stock around these target levels. This
stability in the TAC results in the lower levels of inter-annual
variation in catch levels.

Given the life-history of anchovy (short lived with fast
maturation, high natural mortality and highly variable recruit-
ment) the HCRs tested used SSB and recruitment survey in-
dices only. For practical purposes the recruitment of one year
forms the basis of the spawning stock in the following year
making the idea of a total-mortality type rule practically redun-
dant if one considers recruitment and SSB survey information.
There were two clear conclusions with respect to the anchovy
case study:

• Performance of all the HCRs bar one was strongly driven
by the initialisation of the operating model.
• The HCR which utilised information on both recruitment

and SSB appeared much less sensitive to the initialisation
assumptions.

Given a depleted stock with anchovy-type life-history traits
the results clearly outlined how more accurate surveys and a
wider coverage of the population in terms of its life-cycle can
improve the performance of a dynamic HCR, when one’s key
performance criterion is rebuilding.

For North Sea cod both the SSB and total mortality
HCRs were evaluated over a range of robustness criteria
such as stock-recruit model and data set, initial moratorium,
fine-tuning the HCR using methods from control theory, and
various misreporting regimes. In terms of initialisation influ-
ence, across all other robustness trials an initial catch morato-
rium greatly improved performance in terms of avoiding stock
collapse. With respect to the particular stock-recruit function
assumed the hockey-stick model yielded lower levels of both
maximum recruitment and recruits-per-spawner at low stock
levels, making scenarios assuming this model more prone to
poor performance in terms of avoiding stock collapse. When
restricting the data to the more recent period (1998-2005)
both hockey-stick and Ricker models predicted even poorer
recruits-per-spawner and as such meant that the application of
the SSB-index HCRs resulted in a more marked risk of future
stock collapse.

Of the two considered total mortality HCRs (one using
age-averaged Z from raw survey data, the other using the
YCC method to derive the yearly estimates of Z) only the
YCC-based HCR was considered, given issues with the perfor-
mance of the “raw” Z-based HCR when using the PID control

scheme. The YCC estimated Z-based HCR performed well in
terms of rebuilding the stock and not surprisingly the impo-
sition of the initial moratorium accelerated the time at which
rebuilding (expressed as the time taken to attain a probability
of being above BPA of 95%) could be expected to be achieved.
This rebuilding performance was at the sacrifice of TAC levels:
over almost all cases the average TAC levels were significantly
lower than those seen when using the SSB-based HCR but, as
was observed with the herring Z-based rules, the inter-annual
variation in TAC was lower than that seen using the SSB-based
HCRs.

One interesting issue explored in the cod case study was
the idea of using ideas from control theory to develop more
complicated and dynamic HCRs, even when using simple
survey-derived indices such as those considered here. It was
observed that, for the SSB-based HCRs, the fine-tuned (in-
corporating all three tuning parameters KP, KI and KD) runs
tended to increase the levels of TAC set but at the same time re-
sulted in higher chances of stock collapse. The integral (back-
average of the control variable) and derivative (rate of change
of the control variable) parts of the scheme seemed to act so
as to increase TAC. When reducing the reactivity of the HCR
(KP set to 0.4 and not 1 as in the herring and anchovy cases)
and with the integral and derivative terms set to zero afforded
the stock the shortest rebuilding time. For the SSB-based HCR
with the Ricker model the fine-tuned case performed poorly
given the potential over-compensation dynamics of the Ricker
model as the SSB approaches the point at which recruitment
then begins to decrease. This is perhaps not surprising given
that the PID scheme assumes the linearity of the system being
controlled and this type of Ricker dynamic is strongly non-
linear in origin. For the fine-tuning of the total mortality case
this performed very poorly with the Z estimates derived from
the raw survey data, driven by the fact that the PID scheme
also assumes a smooth system and the observation error driven
noise in the Z estimates caused the fine-tuned scheme to per-
form very poorly, hence its exclusion. The YCC method did
not suffer from this problem and it is because it is essentially
a biological smoother, so it removed some of this stochastic
variation in the Z signal in the survey data, affording the fine
tuned PID scheme much improved performance.

The idea of smoothing the data, for whatever reason, leads
to the potential utility of survey-based assessment methods
within the framework of survey-based management. There are
a number of methods that can use survey data to estimate
trends in key population variables such as total mortality, SSB
and recruitment (Needle 2005; Trenkel 2008; Bogaards et al.
2009). In this paper only the YCC method (used for estimating
total mortality) was used largely on the basis of (a) simplic-
ity in terms of integration within an MSE framework given its
linear nature, and (b) availability as at least one of the more
complex methods is being integrated into the FLR panoply of
packages but was not at a point where its integration into the
MSE framework was feasible. More complex models tend to
be non-linear and require optimisation methods to estimate pa-
rameters and often human judgement to decide on data weight-
ing, model choice and so on. This makes the automated run-
ning of such models in an MSE difficult in some cases but
these may not be insurmountable problems. It is clear that
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having such assessment methods available in the survey-based
management framework detailed in this paper would make the
work more relevant for making actual management recom-
mendations (these methods are used in the assessment process
for many stocks), and would allow one to explore further the
potential utility of survey-based management.

7 Conclusion

In this paper a variety of management procedures con-
structed using only survey-based data have been evaluated, us-
ing a selection of case studies (North Sea herring and cod, Bay
of Biscay anchovy) chosen so as to provide a good coverage of
potential life-histories, stock status dynamics and survey types.
The aim was to both look at how certain management proce-
dures might perform for the given case studies and also to see
what can be inferred from these particular examples with re-
spect to survey-based management of exploited fish stocks in
general. A generic TAC adaption algorithm with a theoreti-
cal basis in classical control theory was defined which was
then parameterised in a variety of different ways relevant to
the particular case studies. Details of how to construct both the
biological, observation and management sections of the over-
all operating model were given, with particular relevance to
fisheries assessed using VPA-type algorithms and with age-
structured surveys.

The scenarios considered in the three case studies showed
that conservative HCRs are required to control a system with
high variability regardless of whether that comes from exter-
nal factors (e.g. high misreporting or imprecise survey data)
or from the stock itself (e.g. yield is sustained by a couple of
year classes, stock-recruit uncertainty etc.). Also the “cover-
age” of the surveys with respect to the life-cycle of the pop-
ulation was found to be important. For North Sea herring the
total mortality HCR clearly utilised the information from the
survey relating to the juvenile and adult portions of the stock;
for anchovy it was observed that the potential inclusion of a
recruitment survey (effectively closing the life-cycle loop with
the SSB survey) made the associated management procedure
more robust than all of those that lacked such recruitment in-
formation. Other important issues are the levels and structure
of the observation errors; correlation among indicators thought
to be independent; HCRs relying on models that in turn rely
on assumptions that are not supportable; unaccounted-for lags
between the application of the HCRs, management action and
response by the stocks.

The simulations also clearly demonstrate the need for man-
agement procedures designed and tested on a case-specific ba-
sis which is neither a new nor surprising result, but does add
further support to the utility of the management strategy eval-
uation process, with respect to designing and defining man-
agement regimes. Also, there is the potential for such work to
inform on survey design. There were clear cases where survey
precision was an important factor in determining performance
(from both stock preservation and fishery perspectives) and
these types of analyses could be the case for support for more
survey effort/coverage. Also, the anchovy simulations showed
the potential benefit of a recruitment survey, even though at

present no such survey is undertaken. For North Sea herring
the results are far more robust to our ideas about the stock-
recruit dynamics than the North Sea cod case; for the an-
chovy case the importance of individual year-class strength
was found to be important, whereas for the others the stochas-
tic variation in recruitment was less important than the manner
in which we define mean recruitment (i.e. stock-recruit curve),
given the spawning stock. For North Sea herring we have a
reasonable understanding of the error and also the error struc-
ture of the key surveys, but given the differing performance
of all the rules (irrespective of the stock) for different levels
of observation error, it is also clear that some rules may well
be more robust (or acceptable to stakeholders) to higher levels
of survey imprecision. Having multiple performance criteria
(biological and economic for example) allows one to assess
the potential trade-offs of one particular harvest strategy com-
pared to another, depending on what weight is given to the
various performance measures.

The results of the analyses show that survey-based man-
agement, in conjunction with the use of management strategy
evaluation in the management design phase, could provide a
workable alternative to catch-based methods for fisheries man-
agement. In terms of using the MSE process it is clear that
using a survey-based approach does not remove the problems
of a lack of understanding of key processes, in particular the
spawner-recruitment dynamics, but at the very least the re-
moval of the dependence of having to know natural mortal-
ity must be considered a key advantage. The case studies all
showed a reasonable level of robustness to low levels of mis-
reporting (specified as under-reporting) but that consistently
high levels cannot be easily dealt with. While this is also true
for most fisheries data-dependent approaches one key advan-
tage of the survey-based approach is that there are no associ-
ated biases entrained in the data available for estimating stock
status. The fishery models used in this analysis are quite simple
and do not allow evaluation of the performance of the HCRs
in terms of the fishery and economical and social issues. Al-
though such aspects could be equally important, their consider-
ation in the calculations was beyond the scope of this analysis.
The use of assessment methods that use only survey data were
very briefly explored using a simple model but as the various
models available are further developed, used for assessment
and hopefully incorporated into the software framework used
in this work their inclusion in the survey-based MSE process
is strongly encouraged.
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APPENDIX

Initial equation:
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

T ACy+1 = min
{
max

{
exp{u1

y}, exp{u2
y}
}
, exp{u3

y}
}

T ACy

uy = KP ey + KI

y∑
z=y−δ

ez + KD

(
ey − ey−1

)
(3)

• uy: control signal in year y.

• ey: divergence of an index relative to a reference point.

• KP, KI and KD: three parameters.

• δ : history that is considered in calculating the control sig-
nal.

HCR0:

– Serves as a reference scenario
– Corresponds to the case in which no fishing is allowed
– Conforms to KP = KI = KD = 0

T ACy+1 = 0 (4)

HCR1:

– Consists on keeping the TAC at a constant level defined by
the latest historical catch level

– KI = KD = 0, KP = 1 and ey = log (1)

T ACy+1 = T ACy (5)

Pure P-controllers HCRs (North Sea herring and Bay of Biscay
anchovy):

– KI = KD = 0

T ACy+1 = min
{
max

{
exp{u1

y}, exp{u2
y}
}
, exp{u3

y}
}

T ACy (6)

If no min, max functions are used:

– u1
y = u2

y = u3
y

T ACy+1 = exp
{
Kpey

}
T ACy (7)

By adjusting these factors, we can recreate HCRs implemented
for herring and anchovy:

– KI = KD = 0, KP = 1
– ey = log

(
Iy
)
− log

(
Iy−1

)
= log

(
Iy
/
Iy−1

)

T ACy+1 = T ACy

(
Iy

Iy−1

)
(8)

Examples of Iy based on SSB

– Iy = SŜBy

T ACy+1 = T ACy

⎛⎜⎜⎜⎜⎝ SŜBy

SŜBy−1

⎞⎟⎟⎟⎟⎠ (9)

• SŜBy : SSB observations from the surveys

Use of min and max functions:

– u1
y, u2

y and u3
y have different values

– For example: u1
y = log

(
SŜBy

SŜBy−1

)
, u2
y = 0.8, u3

y = 1.2 varia-

tion constrained by an upper and lower limit for the inter-
annual variation in the TAC (20% in the example)

T ACy+1 = min

⎧⎪⎪⎨⎪⎪⎩max

⎧⎪⎪⎨⎪⎪⎩
SŜBy

SŜBy−1
, 0.8

⎫⎪⎪⎬⎪⎪⎭ , 1.2
⎫⎪⎪⎬⎪⎪⎭ T ACy. (10)

Examples of Iy based on Z (total mortality rate)

T ACy+1 = T ACy ∗min

⎛⎜⎜⎜⎜⎜⎝ ZPA
[0.1]

Zy−1,[0,1]
,

ZPA
[2.6]

Zy−1,[2,6]

⎞⎟⎟⎟⎟⎟⎠ · (11)

In the case of North Sea herring, the index is estimated for 2
age groups of the stock and the minimum of the two ratios is
used in the calculation of the TAC. Two age groups (0 to 1 and
2 to 6) are distinguished in the calculation of the TAC so we
are using an age-structured survey in this case. The TAC of fol-
lowing year is inversely proportional to the observed changes
in total mortality estimated along cohorts from the survey. TAC
is increased in proportion to the smallest relative increase in
ZPA/Z. Values of the total mortality rate at age at the precau-
tionary level (ZPA) for each age group derive from other pa-
rameter values defined by ICES. The total mortality rate, Z, is
the sum of the natural mortality M and the fishing mortality
F. For the group 0-1 year old, FPA, defined by ICES, is equal
to 0.12 (ICES 2007b) and M is estimated as 1 by ICES North
Sea Multispecies Virtual Population Analysis, MSVPA (Pope
1991). The combination of both of them gives a value of 1.12
for ZPA

[0,1]. For ages 2 to 6, FPA has been fixed at 0.25 by ICES
experts and the natural mortality rate is equal to 0.3, 0.2 and
0.1 for ages 2, 3 and 4+ respectively. The combination of the
mean of the natural mortality rate at age and FPA gives a value
of 0.4 for ZPA

[2,6]. For each year, both ratios included in HCR are
calculated and the minimum value is used to calculate the TAC
for the following year.

Combination of indices:

– Iy = SŜByR̂y

T ACy+1 = T ACy
SŜBy

SŜBy−1

R̂y

R̂y−1
(12)

• SŜBy : SSB observations from the surveys
• R̂y : recruitment from the surveys

PID-controllers HCRs (North Sea cod)

– Various KP, KI and KD values
– u1

y = u2
y = u3

y

– δ = 5.
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