Por favor, use este identificador para citar o enlazar este ítem: http://dspace.azti.es/handle/24689/1063
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorLezama-Ochoa, Nerea-
dc.contributor.authorGrazia Pennino, Maria-
dc.contributor.authorHall, Martin A.-
dc.contributor.authorLopez, Jon-
dc.contributor.authorMurua, Hilario-
dc.date.accessioned2021-07-02T08:11:55Z-
dc.date.available2021-07-02T08:11:55Z-
dc.date.issued2020-
dc.identifierISI:000589617900001-
dc.identifier.issn2045-2322-
dc.identifier.urihttp://dspace.azti.es/handle/24689/1063-
dc.description.abstractTo protect the most vulnerable marine species it is essential to have an understanding of their spatiotemporal distributions. In recent decades, Bayesian statistics have been successfully used to quantify uncertainty surrounding identified areas of interest for bycatch species. However, conventional simulation-based approaches are often computationally intensive. To address this issue, in this study, an alternative Bayesian approach (Integrated Nested Laplace Approximation with Stochastic Partial Differential Equation, INLA-SPDE) is used to predict the occurrence of Mobula mobular species in the eastern Pacific Ocean (EPO). Specifically, a Generalized Additive Model is implemented to analyze data from the Inter-American Tropical Tuna Commission's (IATTC) tropical tuna purse-seine fishery observer bycatch database (2005-2015). The INLA-SPDE approach had the potential to predict both the areas of importance in the EPO, that are already known for this species, and the more marginal hotspots, such as the Gulf of California and the Equatorial area which are not identified using other habitat models. Some drawbacks were identified with the INLA-SPDE database, including the difficulties of dealing with categorical variables and triangulating effectively to analyze spatial data. Despite these challenges, we conclude that INLA approach method is an useful complementary and/or alternative approach to traditional ones when modeling bycatch data to inform accurately management decisions.-
dc.language.isoEnglish-
dc.publisherNATURE RESEARCH-
dc.subjectSPECIES DISTRIBUTION MODELS-
dc.subjectFISHERIES-
dc.subjectDISTRIBUTIONS-
dc.subjectCONSERVATION-
dc.subjectPATTERNS-
dc.subjectMANTA-
dc.subjectFISH-
dc.titleUsing a Bayesian modelling approach (INLA-SPDE) to predict the occurrence of the Spinetail Devil Ray (Mobular mobular)-
dc.typeArticle-
dc.identifier.journalSCIENTIFIC REPORTS-
dc.format.volume10-
dc.contributor.funderBasque Government Department of EducationBasque Government-
dc.identifier.doi10.1038/s41598-020-73879-3-
Aparece en las tipos de publicación: Artículos científicos



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.