Por favor, use este identificador para citar o enlazar este ítem: http://dspace.azti.es/handle/24689/1154
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorCitores, Leire-
dc.contributor.authorIbaibarriaga, Leire-
dc.contributor.authorLee, D-J-
dc.contributor.authorBrewer, M. J.-
dc.contributor.authorSantos, Maria-
dc.contributor.authorChust, Guillem-
dc.date.accessioned2021-07-02T08:13:28Z-
dc.date.available2021-07-02T08:13:28Z-
dc.date.issued2020-
dc.identifierISI:000515200900008-
dc.identifier.issn0304-3800-
dc.identifier.urihttp://dspace.azti.es/handle/24689/1154-
dc.description.abstractAccording to ecological niche theory, species response curves are unimodal with respect to environmental gradients. A variety of statistical methods have been developed for species distribution modelling. A general problem with most of these habitat modelling approaches is that the estimated response curves can display biologically implausible shapes which do not respect ecological niche theory. This work proposes using shape-constrained generalized additive models (SC-GAMs) to build species distribution models under the ecological niche theory framework, imposing concavity constraints in the linear predictor scale. Based on a simulation study and a real data application, we compared performance with respect to other regression models without shape-constraints (such as standard GLMs and GAMS with varying degrees of freedom) and also to models based on so-called ``Plateau�� climate-envelopes. The imposition of concavity for response curves resulted in a good balance between the goodness of fit (GOF) and agreement with ecological niche theory. The approach has been applied to fit distribution models for three fish species given several environmental variables.-
dc.language.isoEnglish-
dc.publisherELSEVIER-
dc.subjectEcological niche theory-
dc.subjectGAMS-
dc.subjectGLMs-
dc.subjectPlateau method-
dc.subjectShape-constrained GAMS-
dc.subjectSpecies distribution models-
dc.subjectLOGISTIC-REGRESSION-
dc.subjectSPATIAL PREDICTION-
dc.subjectATLANTIC-
dc.subjectDISTRIBUTIONS-
dc.subjectPATTERNS-
dc.subjectHABITAT-
dc.subjectSPLINES-
dc.subjectENVIRONMENT-
dc.subjectVALIDATION-
dc.subjectSARDINA-
dc.titleModelling species presence-absence in the ecological niche theory framework using shape-constrained generalized additive models-
dc.typeArticle-
dc.identifier.journalECOLOGICAL MODELLING-
dc.format.volume418-
dc.contributor.funderAZTI-
dc.contributor.funderBasque Government through the BERC 2018-2021 programBasque Government-
dc.contributor.funderBasque Government through CLIPES projectBasque Government-
dc.contributor.funderSpanish Ministry of Science, Innovation and Universities: SCAM Severo Ochoa [SEV-2017-0718]-
dc.contributor.funderAEI/FEDER, UE [MTM2017-82379-R]-
dc.contributor.funderScottish Government's Rural \& Environment Science \& Analytical Services Division-
dc.contributor.funderEuropean CommissionEuropean CommissionEuropean Commission Joint Research Centre-
dc.contributor.funderEUEuropean Commission [97-017]-
dc.identifier.e-issn1872-7026-
dc.identifier.doi10.1016/j.ecolmodel.2019.108926-
Aparece en las tipos de publicación: Artículos científicos



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.