Por favor, use este identificador para citar o enlazar este ítem: http://dspace.azti.es/handle/24689/1667
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorParadinas, Iosu
dc.contributor.authorIllian, Janine
dc.contributor.authorSmout, Sophie
dc.contributor.authorHewitt, Judi
dc.date.accessioned2024-03-12T11:49:09Z-
dc.date.available2024-03-12T11:49:09Z-
dc.date.issued2023
dc.identifierWOS:001000621000036
dc.identifier.issn1932-6203
dc.identifier.urihttp://dspace.azti.es/handle/24689/1667-
dc.description.abstractSpecies Distribution Models often include spatial effects which may improve prediction at unsampled locations and reduce Type I errors when identifying environmental drivers. In some cases ecologists try to ecologically interpret the spatial patterns displayed by the spatial effect. However, spatial autocorrelation may be driven by many different unaccounted drivers, which complicates the ecological interpretation of fitted spatial effects. This study aims to provide a practical demonstration that spatial effects are able to smooth the effect of multiple unaccounted drivers. To do so we use a simulation study that fit model-based spatial models using both geostatistics and 2D smoothing splines. Results show that fitted spatial effects resemble the sum of the unaccounted covariate surface(s) in each model.
dc.language.isoEnglish
dc.publisherPUBLIC LIBRARY SCIENCE
dc.subjectRED HERRINGS
dc.subjectAUTOCORRELATION
dc.subjectPATTERN
dc.subjectSPACE
dc.titleUnderstanding spatial effects in species distribution models
dc.typeArticle
dc.identifier.journalPLOS ONE
dc.format.volume18
dc.contributor.funderMarie Sklodowska-Curie Research Fellowship [GAP-847014]
dc.identifier.doi10.1371/journal.pone.0285463
Aparece en las tipos de publicación: Artículos científicos



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.