Por favor, use este identificador para citar o enlazar este ítem: http://dspace.azti.es/handle/24689/1668
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorCastresana, Joseba
dc.contributor.authorGabina, Gorka
dc.contributor.authorQuincoces, Inaki
dc.contributor.authorUriondo, Zigor
dc.date.accessioned2024-03-12T11:49:09Z-
dc.date.available2024-03-12T11:49:09Z-
dc.date.issued2023
dc.identifierWOS:001036816900001
dc.identifier.issn0951-8320
dc.identifier.urihttp://dspace.azti.es/handle/24689/1668-
dc.description.abstractThe condition-based maintenance of marine propulsion systems is attracting increasing interest in safety-related, financial, and environmental terms. Many researchers have studied different marine diesel engine models and fault identification techniques. However, the thresholds between a healthy and a faulty engine have not been thoroughly analysed. Thus, this study aims to determine healthy engine threshold values for multiple parameters of a marine diesel engine. To this end, an operative commercial fishing vessel was considered, and multiple engine performance variables were measured through 2020 and the first half of 2021, totalling 5181 operating hours of the main engine without any fault occurrence. Preliminary correlation and relative deviation studies suggested the analysis of some constant trend parameters with alternative modelling techniques. Hence, probability density functions (PDFs) were used to establish confidence intervals for such parameters with data from the entire year of 2020. The parameters with the highest correlation and deviation were alternatively modelled using artificial neural networks (ANNs). Four different ANNs were trained, validated, and tested with data from 2020, calculating the mean absolute percentage errors for all the predicted parameters. Finally, data from 2021 were used to validate both the PDF and ANN modelled parameter thresholds set in 2020. For the 2021 data, the confidence interval set with the PDF showed a maximum failure rate of 1.21\%. Alternatively, the ANN model parameters exhibited maximum percentage errors of 1.1\%, 1.22\%, and 1.95\% for the engine performance, cooling, and cylinder subsystems, respectively. Finally, all the obtained thresholds were summarised, providing a good source for establishing faulty engine threshold values in future fault detection studies.
dc.language.isoEnglish
dc.publisherELSEVIER SCI LTD
dc.subjectArtificial neural networks
dc.subjectProbability density functions
dc.subjectDiesel engine modelling
dc.subjectShip propulsion characterisation
dc.subjectThreshold characterisation
dc.subjectOnboard model validation
dc.subjectARTIFICIAL NEURAL-NETWORK
dc.subjectFAULT-DETECTION
dc.subjectPERFORMANCE
dc.subjectPREDICTION
dc.subjectDIAGNOSIS
dc.subjectALGORITHMS
dc.subjectIMPROVE
dc.subjectSYSTEMS
dc.subjectMODEL
dc.subjectRISK
dc.titleHealthy marine diesel engine threshold characterisation with probability density functions and ANNs
dc.typeArticle; Early Access
dc.identifier.journalRELIABILITY ENGINEERING \& SYSTEM SAFETY
dc.format.volume238
dc.contributor.funderBasque Government
dc.contributor.funderDepartment of Economic Development and Infrastructure
dc.contributor.funderEuropean Union's Horizon 2020 research and innovation programme (SusTunTech) [869353]
dc.identifier.e-issn1879-0836
dc.identifier.doi10.1016/j.ress.2023.109466
Aparece en las tipos de publicación: Artículos científicos



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.