Por favor, use este identificador para citar o enlazar este ítem: http://dspace.azti.es/handle/24689/1694
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Título : Predicting ship fuel consumption using a combination of metocean and on-board data
Autor : Zhou, Yi; Pazouki, Kayvan; Murphy, Alan J.; Uriondo, Zigor; Granado, Igor; Quincoces, Inaki; Fernandes, Jose A.
Resumen : Fuel Oil Consumption (FOC) accounts for a significant proportion of a vessel's operating costs. The cost of fuel for a fishing vessel operation may often go up to 50\% or more. Accurate forecasting FOC in voyage planning stage is essential for route optimization decision support system with the objective of fuel-saving, which is difficult because the future state of the vessel and its power and machinery systems for fuel modelling are not available during route planning stage. Moreover, the state of the environment conditions and its impact on vessel performance should be considered. In this paper, machine learning approaches were applied to predict FOC from plannable in-situ variables and modelled speed through water. The latter is estimated from speed over ground and environmental variables in this work, whose prediction is also critical for decision support systems to avoid collisions. By applying the proposed methodology, the final selected Random Forest models can achieve high mean accuracies (over 92\%) in predicting fuel consumption on unseen future data.
Palabras clave : Fuel oil consumption prediction; Ship energy efficiency; Multiple regression; Machine learning; Decision support system; REGRESSION; RIDGE
Fecha de publicación : 2023
Editorial : PERGAMON-ELSEVIER SCIENCE LTD
Tipo de documento: Article; Early Access
Idioma: 
DOI: 10.1016/j.oceaneng.2023.115509
URI : http://dspace.azti.es/handle/24689/1694
ISSN : 0029-8018
E-ISSN: 1873-5258
Patrocinador: European Union [869342]
Aparece en las tipos de publicación: Artículos científicos



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.