Por favor, use este identificador para citar o enlazar este ítem: http://dspace.azti.es/handle/24689/1760
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorRubbens, Peter-
dc.contributor.authorBrodie, Stephanie-
dc.contributor.authorCordier, Tristan-
dc.contributor.authorDestro Barcellos, Diogo-
dc.contributor.authorDevos, Paul-
dc.contributor.authorFernandes, Jose A.-
dc.contributor.authorFincham, I, Jennifer; Gomes, Alessandra-
dc.contributor.authorHandegard, Nils Olav and Howell, Kerry-
dc.contributor.authorJamet, Cedric-
dc.contributor.authorKartveit, Kyrre Heldal and Moustahfid, Hassan-
dc.contributor.authorParcerisas, Clea-
dc.contributor.authorPolitikos, Dimitris and Sauzede, Raphaelle-
dc.contributor.authorSokolova, Maria-
dc.contributor.authorUusitalo, Laura-
dc.contributor.authorVan den Bulcke, Laure-
dc.contributor.authorvan Helmond, Aloysius T. M.-
dc.contributor.authorWatson, Jordan T. and Welch, Heather-
dc.contributor.authorBeltran-Perez, Oscar-
dc.contributor.authorChaffron, Samuel and Greenberg, David S.-
dc.contributor.authorKuehn, Bernhard-
dc.contributor.authorKiko, Rainer-
dc.contributor.authorLo, Madiop and Lopes, Rubens M.-
dc.contributor.authorMoeller, Klas Ove-
dc.contributor.authorMichaels, William and Pala, Ahmet-
dc.contributor.authorRomagnan, Jean-Baptiste-
dc.contributor.authorSchuchert, Pia-
dc.contributor.authorSeydi, Vahid-
dc.contributor.authorVillasante, Sebastian-
dc.contributor.authorMalde, Ketil-
dc.contributor.authorIrisson, Jean-Olivier-
dc.date.accessioned2024-03-12T11:49:19Z-
dc.date.available2024-03-12T11:49:19Z-
dc.date.issued2023-
dc.identifierWOS:001041998200001-
dc.identifier.citationICES JOURNAL OF MARINE SCIENCE, 2023, 80, 1829-1853-
dc.identifier.issn1054-3139-
dc.identifier.urihttp://dspace.azti.es/handle/24689/1760-
dc.description.abstractMachine learning covers a large set of algorithms that can be trained to identify patterns in data. Thanks to the increase in the amount of data and computing power available, it has become pervasive across scientific disciplines. We first highlight why machine learning is needed in marine ecology. Then we provide a quick primer on machine learning techniques and vocabulary. We built a database of \& SIM;1000 publications that implement such techniques to analyse marine ecology data. For various data types (images, optical spectra, acoustics, omics, geolocations, biogeochemical profiles, and satellite imagery), we present a historical perspective on applications that proved influential, can serve as templates for new work, or represent the diversity of approaches. Then, we illustrate how machine learning can be used to better understand ecological systems, by combining various sources of marine data. Through this coverage of the literature, we demonstrate an increase in the proportion of marine ecology studies that use machine learning, the pervasiveness of images as a data source, the dominance of machine learning for classification-type problems, and a shift towards deep learning for all data types. This overview is meant to guide researchers who wish to apply machine learning methods to their marine datasets.-
dc.language.isoEnglish-
dc.publisherOXFORD UNIV PRESS-
dc.subjectacoustics-
dc.subjectecology-
dc.subjectimage-
dc.subjectmachine learning-
dc.subjectomics-
dc.subjectprofiles-
dc.subjectremote sensing-
dc.subjectreview-
dc.subjectCONVOLUTIONAL NEURAL-NETWORKS-
dc.subjectPHYTOPLANKTON COMMUNITY COMPOSITION-
dc.subjectCHLOROPHYLL-A CONCENTRATION-
dc.subjectSPECIES DISTRIBUTION MODELS-
dc.subjectSITU FLUORESCENCE PROFILES-
dc.subjectRIBOSOMAL-RNA SEQUENCES-
dc.subjectOCEAN COLOR-
dc.subjectAUTOMATIC IDENTIFICATION-
dc.subjectFLOW-CYTOMETRY-
dc.subjectINCORPORATING UNCERTAINTY-
dc.titleMachine learning in marine ecology: an overview of techniques and applications-
dc.typeReview; Early Access-
dc.identifier.journalICES JOURNAL OF MARINE SCIENCE-
dc.format.page1829-1853-
dc.format.volume80-
dc.contributor.funderSwiss National Science Foundation [31003A\_179125]-
dc.contributor.funderEuropean Research Council [818449 AGENSI]-
dc.contributor.funderHorizon Europe programme [101094924]-
dc.contributor.funderproject H2020 FutureMARES [869300]-
dc.contributor.funderproject H2020 SusTunTech [869342]-
dc.contributor.funderCRIMAC centre - Research Council of Norway [309512]-
dc.contributor.funderMission Atlantic project - European Union's Horizon 2020 Research and Innovation Programme [862428]-
dc.contributor.funderEuropean Union's H2020 programme [7553521]-
dc.contributor.funderEuropean's Maritime and Fisheries Fund-
dc.contributor.funderDanish Fisheries Agency [33112-I-19-076]-
dc.contributor.funderFully Documented Fisheries - European Maritime and Fisheries Fund (EMFF)-
dc.contributor.funderSand Fund of the Federal Public Service Economy-
dc.contributor.funderH2020 project AtlantECO [862923]-
dc.contributor.funderCNPq, Brazil [315033/2021-5]-
dc.contributor.funderFrench National Research Agency [ANR-19-MPGA-0012]-
dc.contributor.funderHeisenberg programme of the German Science Foundation [469175784]-
dc.contributor.funderNOAA [NA21OAR4310254]-
dc.contributor.funderIFREMER Scientific Direction project DEEP-
dc.contributor.funderNorwegian Ministry of Trade, Industry and Fisheries-
dc.contributor.funderBelmont Forum project WWWPIC [ANR-018-BELM-0003 01]-
dc.contributor.funderAgence Nationale de la Recherche (ANR) [ANR-19-MPGA-0012] Funding Source: Agence Nationale de la Recherche (ANR)-
dc.contributor.funderHorizon Europe - Research Infrastructures (RIS) [101094924] Funding Source: Horizon Europe - Research Infrastructures (RIS)-
dc.identifier.e-issn1095-9289-
dc.identifier.doi10.1093/icesjms/fsad100-
Aparece en las tipos de publicación: Artículos científicos



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.