Por favor, use este identificador para citar o enlazar este ítem: http://dspace.azti.es/handle/24689/1828
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGalparsoro, Ibon
dc.contributor.authorPouso, Sarai
dc.contributor.authorGarcia-Baron, Isabel
dc.contributor.authorMugerza, Estanis
dc.contributor.authorMateo, Maria
dc.contributor.authorParadinas, Iosu
dc.contributor.authorLouzao, Maite and Borja, Angel
dc.contributor.authorMandiola, Gotzon
dc.contributor.authorMurillas, Arantza
dc.date.accessioned2025-03-17T16:27:07Z-
dc.date.available2025-03-17T16:27:07Z-
dc.date.issued2024
dc.identifierWOS:001165157200001
dc.identifier.citationICES JOURNAL OF MARINE SCIENCE, 2024, 81, 453-469
dc.identifier.issn1054-3139
dc.identifier.urihttp://dspace.azti.es/handle/24689/1828-
dc.description.abstractEffective and sustainable management of small-scale fisheries (SSF) is challenging. We describe a novel approach to identify important fishing grounds for SSF, by implementing a habitat modelling approach, using environmental predictors and Automatic Identification System (AIS)-B data coupled with logbook and First Sales Notes data, within the SE Bay of Biscay. Fishing activity patterns and catches of longliners and netters are used to determine the main environmental characteristics of the fishing grounds, and a habitat modelling approach is implemented to predict the zones that fulfil similar environmental characteristics across a larger geographical extent. Generalized additive mixed models (GAMMs) were built for 24 fish species, and to identify other zones that fulfil similar characteristics and, thus, could be considered relevant for the species targeted by each gear type. Most of the models showed a good prediction capacity. The models included between one and four predictor variables. `Depth of mixing layer' and `benthic rocky habitat' were the variables included more frequently for fish species captured by netter's fleet. For longliners, the `seafloor slope' and `benthic rocky habitat' were the two most important variables. The predictive maps provide relevant information to assist in management and marine spatial planning.
dc.language.isoEnglish
dc.publisherOXFORD UNIV PRESS
dc.subjectAIS-B
dc.subjectartisanal fishery
dc.subjectfishery-dependent data
dc.subjecthabitat suitability modelling
dc.subjectmarine spatial planning
dc.subjectmanagement
dc.subjectHABITAT SUITABILITY
dc.subjectAIS DATA
dc.subjectARTISANAL FISHERIES
dc.subjectSUITABLE HABITAT
dc.subjectMODEL
dc.subjectMANAGEMENT
dc.subjectVMS
dc.subjectBAY
dc.subjectLOGBOOKS
dc.subjectBISCAY
dc.titlePredicting important fishing grounds for the small-scale fishery, based on Automatic Identification System records, catches, and environmental data
dc.typeArticle
dc.identifier.journalICES JOURNAL OF MARINE SCIENCE
dc.format.page453-469
dc.format.volume81
dc.contributor.funderProject EBARTESA
dc.contributor.funderEuropean Regional Development Fund (ERDF)
dc.contributor.funderBasque Government Administration
dc.contributor.funderINTEMARES project
dc.contributor.funderEuropean Union's LIFE programme [LIFE15 IP ES 012 INTEMARES]
dc.contributor.funderRamon y Cajal contract from the Spanish Government [RYC-2012-09897]
dc.identifier.e-issn1095-9289
dc.identifier.doi10.1093/icesjms/fsae006
Aparece en las tipos de publicación: Artículos científicos



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.