Por favor, use este identificador para citar o enlazar este ítem: http://dspace.azti.es/handle/24689/1831
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorCitores, Leire
dc.contributor.authorIbaibarriaga, Leire
dc.contributor.authorSantos, Maria
dc.contributor.authorUriarte, Andres
dc.date.accessioned2025-03-17T16:27:07Z-
dc.date.available2025-03-17T16:27:07Z-
dc.date.issued2024
dc.identifierWOS:001155636600001
dc.identifier.citationCANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES, 2024, 81, 1013-1028
dc.identifier.issn0706-652X
dc.identifier.urihttp://dspace.azti.es/handle/24689/1831-
dc.description.abstractBiomass estimates of fish resources by the daily egg production method (DEPM) are sensitive to the high variability of the daily egg production (P0) and egg mortality (Z) in space. This work presents a Bayesian approach to estimate these parameters. A prior distribution of Z based on literature serves to overcome the biologically implausible Z estimates that can result from frequentist approaches. In addition to the classical estimation of a single P0 over the spawning area, the Bayesian framework allows also the modelling of egg densities in space, by including either spatial random effects, smoothing functions, or kriging like models, providing insights into the spatial variability of P0. The Bayesian approach was applied to the Bay of Biscay anchovy DEPM surveys. Results showed that this Bayesian approximation solved the implausible Z problem resulting in tighter credible intervals of both P0 and Z. Overall, spatial models outperformed the non-spatial model in terms of goodness of fit and resulted in slightly different total production estimates across models for each year, with a moderate decrease on uncertainty estimates.
dc.language.isoEnglish
dc.publisherCANADIAN SCIENCE PUBLISHING
dc.subjectDEPM
dc.subjectBayesian
dc.subjectspatial modelling
dc.subjectmortality
dc.subjectanchovy
dc.subjectBay of Biscay
dc.subjectSARDINE SARDINOPS-SAGAX
dc.subjectSPAWNING STOCK BIOMASS
dc.subjectENGRAULIS-ENCRASICOLUS
dc.subjectMODELS
dc.subjectENVIRONMENT
dc.subjectPRECISION
dc.subjectMORTALITY
dc.subjectREVISION
dc.titleA Bayesian spatially explicit estimation of daily egg production: application to anchovy in the Bay of Biscay
dc.typeArticle
dc.identifier.journalCANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES
dc.format.page1013-1028
dc.format.volume81
dc.contributor.funderDepartment of Economic Development and Infrastructure of Basque Government (Basque Country, SPAIN)
dc.contributor.funderEuropean Commission
dc.contributor.funderSpanish General Secretariat of the Sea (Secretaria General de Pesca)
dc.identifier.e-issn1205-7533
dc.identifier.doi10.1139/cjfas-2023-0126
Aparece en las tipos de publicación: Artículos científicos



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.