Por favor, use este identificador para citar o enlazar este ítem: http://dspace.azti.es/handle/24689/1841
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorLekanda, Aitor
dc.contributor.authorBoyra, Guillermo
dc.contributor.authorLouzao, Maite
dc.date.accessioned2025-03-17T16:27:07Z-
dc.date.available2025-03-17T16:27:07Z-
dc.date.issued2024
dc.identifierWOS:001261554800001
dc.identifier.citationICES JOURNAL OF MARINE SCIENCE, 2024, 81, 1247-1262
dc.identifier.issn1054-3139
dc.identifier.urihttp://dspace.azti.es/handle/24689/1841-
dc.description.abstractIn trawl-acoustic methods, machine learning can objectively assign species composition to echo-traces, providing a reproducible approach for improving biomass assessments and the study of schooling behaviour. However, the automatic classification of schools in multispecies environments is challenging due to the difficulty of obtaining ground truth information for training. We propose a weakly supervised approach to classify schools into seven classes using catch proportions as probabilities. A balancing strategy was used to address high dominance of some species while preserving species mixtures. As the composition of schools from multispecific catches was unknown, model performance was evaluated at the school and haul level. Accuracy was 63.5\% for schools from single-species catches or those identified by experts, and a 20.1\% error was observed when comparing predicted and actual species proportions at the haul level. Positional and energetic descriptors were highly relevant, while morphological characteristics showed low discriminative power. The highest accuracies were obtained for juvenile anchovy and Muller's pearslide, while sardine was the most challenging to classify. Our multioutput approach allowed the introduction of a metric to assess the confidence of the model in classifying each school. As a result, we introduced a method to classify echo-traces considering prediction reliability.
dc.language.isoEnglish
dc.publisherOXFORD UNIV PRESS
dc.subjectpelagic species
dc.subjectschool classification
dc.subjecttrawl-acoustic surveys
dc.subjectfisheries acoustics
dc.subjectmachine learning
dc.subjectweak-supervision
dc.subjectSPECIES IDENTIFICATION
dc.subjectFISH SCHOOLS
dc.subjectSPATIAL-DISTRIBUTION
dc.subjectCLIMATE-CHANGE
dc.subjectBAY
dc.subjectMULTIFREQUENCY
dc.subjectNETWORKS
dc.subjectBEHAVIOR
dc.subjectIMPACTS
dc.titleWeakly supervised classification of acoustic echo-traces in a multispecific pelagic environment
dc.typeArticle
dc.identifier.journalICES JOURNAL OF MARINE SCIENCE
dc.format.page1247-1262
dc.format.volume81
dc.contributor.funderBasque Government scholarship [PRE\_2022\_2\_0096]
dc.contributor.funderRamon y Cajal postdoctoral contract of the Spanish Ministry of Economy, Industry and Competitiveness [RYC-2012-09897]
dc.contributor.funderThe `Viceconsejeria de Agricultura, Pesca y Politicas Alimentarias-Departamento de Desarrollo Economico y Sostenibilidad y Medio Ambiente' of the Basque Government
dc.contributor.funderThe `Secretaria General de Pesca, Ministerio de Agricultura, Alimentacion y Medio Ambiente' of the Spanish Government
dc.contributor.funderSpanish Institute of Oceanography (IEO)
dc.identifier.e-issn1095-9289
dc.identifier.doi10.1093/icesjms/fsae085
Aparece en las tipos de publicación: Artículos científicos



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.