Please use this identifier to cite or link to this item: http://dspace.azti.es/handle/24689/1876
Files in This Item:
There are no files associated with this item.
Title: Genetic Sex and Origin Identification Suggests Differential Migration of Male and Female Atlantic Bluefin Tuna (<i>Thunnus thynnus</i>) in the Northeast Atlantic
Authors: Nielsen, Einar Eg; Birnie-Gauvin, Kim; Baktoft, Henrik; Arrizabalaga, Haritz; Brodin, Tomas; Cardinale, Massimiliano; Casini, Michele;; Helstrom, Gustav; Jansen, Teunis; Koed, Anders; Lundberg, Petter; Mackenzie, Brian R.; Medina, Antonio; Post, Soren; Rodriguez-Ezpeleta, Naiara; Sundelof, Andreas; Varela, Jose Luis; Aarestrup, Kim
Abstract: Knowledge about sex-specific difference in life-history traits-like growth, mortality, or behavior-is of key importance for management and conservation as these parameters are essential for predictive modeling of population sustainability. We applied a newly developed molecular sex identification method, in combination with a SNP (single nucleotide polymorphism) panel for inferring the population of origin, for more than 300 large Atlantic bluefin tuna (ABFT) collected over several years from newly reclaimed feeding grounds in the Northeast Atlantic. The vast majority (95\%) of individuals were genetically assigned to the eastern Atlantic population, which migrates between spawning grounds in the Mediterranean and feeding grounds in the Northeast Atlantic. We found a consistent pattern of a male bias among the eastern Atlantic individuals, with a 4-year mean of 63\% males (59\%-65\%). Males were most prominent within the smallest (< 230 cm) and largest (> 250 cm) length classes, while the sex ratio was close to 1:1 for intermediate sizes (230-250 cm). The results from this new, widely applicable, and noninvasive approach suggests differential occupancy or migration timing of ABFT males and females, which cannot be explained alone by sex-specific differences in growth. Our findings are corroborated by previous traditional studies of sex ratios in dead ABFT from the Atlantic, the Mediterranean, and the Gulf of Mexico. In concert with observed differences in growth and mortality rates between the sexes, these findings should be recognized in order to sustainably manage the resource, maintain productivity, and conserve diversity within the species.
Keywords: ecological genetics; fisheries management; population ecology; population genetics - empirical; EVOLUTION; TRACKING; REVEALS; MARKERS; GROWTH
Issue Date: 2024
Publisher: WILEY
Type: Article
Language: 
DOI: 10.1111/eva.70009
URI: http://dspace.azti.es/handle/24689/1876
ISSN: 1752-4571
Funder: ICCAT [GBYP 04/2017]
ICCAT (ICCAT)
Hempel Foundation [101059915]
EU Horizon Europe Project BiOcean5D (EU)
DTU
Danish Sportfishing Association
Swedish Anglers Association
Western Sweden
Appears in Publication types:Artículos científicos



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.