Por favor, use este identificador para citar o enlazar este ítem: http://dspace.azti.es/handle/24689/1891
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Título : Toward Digitalization of Fishing Vessels to Achieve Higher Environmental and Economic Sustainability
Autor : Uriondo, Zigor; Fernandes, Jose A.; Reite, Karl-Johan; Quincoces, Inaki; Pazouki, Kayvan
Citación : ACS ENVIRONMENTAL AU, 2024, 4, 142-151
Resumen : Fishing vessels need to adapt to and mitigate climate changes, but solution development requires better information about the environment and vessel operations. Even if ships generate large amounts of potentially useful data, there is a large variety of sources and formats. This lack of standardization makes identification and use of key data challenging and hinders its use in improving operational performance and vessel design. The work described in this paper aims to provide cost-effective tools for systematic data acquisition for fishing vessels, supporting digitalization of the fishing vessel operation and performance monitoring. This digitalization is needed to facilitate the reduction of emissions as a critical environmental problem and industry costs critical for industry sustainability. The resulting monitoring system interfaces onboard systems and sensors, processes the data, and makes it available in a shared onboard data space. From this data space, 209 signals are recorded at different frequencies and uploaded to onshore servers for postprocessing. The collected data describe both ship operation, onboard energy system, and the surrounding environment. Nine of the oceanographic variables have been preselected to be potentially useful for public scientific repositories, such as Copernicus and EMODnet. The data are also used for fuel prediction models, species distribution models, and route optimization models.
Palabras clave : Tuna fishery; fisheriesdigitalization; climatechange mitigation; environmental science; technologyresearch; data science; sustainable systems; CONTINUOUS PLANKTON RECORDER; ARTIFICIAL NEURAL-NETWORK; DECISION-SUPPORT-SYSTEM; FUEL CONSUMPTION; OPPORTUNITIES; MAINTENANCE; PERFORMANCE; TECHNOLOGY; PREDICTION; DIAGNOSIS
Fecha de publicación : 2024
Editorial : AMER CHEMICAL SOC
Tipo de documento: Article
Idioma: 
DOI: 10.1021/acsenvironau.3c00013
URI : http://dspace.azti.es/handle/24689/1891
E-ISSN: 2694-2518
Patrocinador: Horizon 2020 Framework Programme [869342]
European Union
Aparece en las tipos de publicación: Artículos científicos



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.