Por favor, use este identificador para citar o enlazar este ítem: http://dspace.azti.es/handle/24689/2440
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Título : Evolutionary multi-objective fishing routing with decision maker's preferences
Autor : Granado, Igor : Szlapczynska, Joanna : Szlapczynski, Rafal : Hernando, Leticia; Fernandes-Salvador, Jose A.
Resumen : This study aims to enhance economic and environmental sustainability of fisheries through fishing routing methods that can reduce operational costs, emission footprints, and incidental fishing risks. To achieve this, a novel problem definition is introduced, the time-dependent multi-objective orienteering problem with time windows and moving targets (TDMOOP-TWMT). Unlike existing fishing routing problems, the TDMOOP-TWMT allows users to define their fishing trips by setting a maximum time at sea rather than a predefined number of fishing sets. This multi-objective problem includes three goals: fuel-oil consumption, catches of tuna species, and incidental catches of non-target species (bycatch). To address this problem, the w-MOEA/D algorithm is employed, which incorporates decision-makers' preferences using wide weight intervals for each objective, eliminating the need for precise weight values. Compared to the classical MOEA/D, the w-MOEA/D method achieves solutions closer to the true Pareto front while reducing the final solution set based on users' preferences. To demonstrate the potential application and benefits in a real context, 12 historical routes are employed across different fishing scenarios, each defined by varying the weight intervals of the objectives. The results show that w-MOEA/D routes allow for consuming less fuel and catching more tuna, though with a higher risk of bycatch when compared to historical trips. However, prioritizing bycatch avoidance reduces this risk while maintaining similar fuel efficiency, although with a lower increase in catches. In summary, this study highlights the effectiveness of the proposed solution method in supporting fishers' decision-making by incorporating their preferences when planning fishing routes.
Palabras clave : Fishing routing; Decision support system; Multi-objective combinatorial optimization; User preferences; Evolutionary multi-objective optimization; ALGORITHM; OPTIMIZATION; DOMINANCE; MOEA/D
Fecha de publicación : 2025
Editorial : ELSEVIER
Tipo de documento: Article
Idioma: 
DOI: 10.1016/j.asoc.2025.113587
URI : http://dspace.azti.es/handle/24689/2440
ISSN : 1568-4946
E-ISSN: 1872-9681
Patrocinador: European Union [869353]
Basque Government [IT1504-22]
Spanish Ministry of Science and Innovation [PID2023-149195NB-I00]
Aparece en las tipos de publicación: Artículos científicos



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.