Por favor, use este identificador para citar o enlazar este ítem: http://dspace.azti.es/handle/24689/2488
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorBanos-Ramos, Andrea : Reneses, Maria : Perez, Jaime : Valverde, Gabriel
dc.contributor.authorAwad, Edmond
dc.contributor.authorLopez, Gregorio Lopez
dc.contributor.authorCastro, Mario
dc.date.accessioned2025-11-13T12:27:37Z-
dc.date.available2025-11-13T12:27:37Z-
dc.date.issued2025
dc.identifierWOS:001582548400041
dc.identifier.issn2045-2322
dc.identifier.urihttp://dspace.azti.es/handle/24689/2488-
dc.description.abstractCyberbullying (CB) has emerged as a growing concern among adolescents, with nearly 10\% of European children affected monthly and almost half experiencing it at least once. Unlike traditional bullying, CB thrives in digital environments where anonymity and impunity are prevalent. Despite its increasing prevalence, understanding the causal mechanisms behind CB remains challenging due to the limitations of conventional statistical methods, which often rely on correlations and are prone to spurious associations. In this paper, we introduce a novel human-machine consensus framework for causal discovery, aimed at supporting social scientists in unraveling the complex dynamics of CB. We leverage recent advances in data-driven causal inference, particularly the use of Directed Acyclic Graphs (DAGs), to identify and interpret causal relationships from observational data. Our approach integrates automatic causal discovery algorithms with expert knowledge, addressing the limitations of both purely algorithmic and purely expert-driven methods, and allows for the creation of a model ensemble estimation of the causal effects. To enhance interpretability and usability, we advocate for the use of Probabilistic Graphical Causal Models (PGCMs), or Bayesian Networks, which combine probabilistic reasoning with graphical representation. This hybrid methodology not only mitigates cognitive biases and inconsistencies in expert input but also fosters transparency and critical reflection in model construction. Cyberbullying serves as a compelling case study where ethical constraints preclude experimental designs, highlighting the value of interpretable, expert-informed causal models for guiding policy and intervention strategies.
dc.language.isoEnglish
dc.publisherNATURE PORTFOLIO
dc.subjectCAUSAL INFERENCE
dc.subjectCOMMUNICATION
dc.subjectKNOWLEDGE
dc.subjectVARIABLES
dc.subjectNETWORKS
dc.subjectDECISION
dc.subjectONLINE
dc.titleEnhancing social science research on cyberbullying through human machine collaboration
dc.typeArticle
dc.identifier.journalSCIENTIFIC REPORTS
dc.format.volume15
dc.contributor.funderHorizon 2020 Framework Programme [882828, PID2022-140217NB-I00]
dc.contributor.funderEuropean Union
dc.contributor.funderERDF/EU A way of making Europe
dc.identifier.doi10.1038/s41598-025-16149-4
Aparece en las tipos de publicación: Artículos científicos



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.