Por favor, use este identificador para citar o enlazar este ítem: http://dspace.azti.es/handle/24689/2507
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Título : Benchmarking shoreline prediction models over multi-decadal timescales
Autor : Mao, Yongjing : Coco, Giovanni : Vitousek, Sean : Antolinez, Jose A. A.; Azorakos, Georgios; Banno, Masayuki; Bouvier, Clement and Bryan, Karin R.; Cagigal, Laura; Calcraft, Kit; Castelle, Bruno; Chen, Xinyu; D'Anna, Maurizio; de Freitas Pereira, Lucas and de Santiago, Inaki; Deshmukh, Aditya N.; Dong, Bixuan and Elghandour, Ahmed; Gohari, Amirmahdi; de la Pena, Eduardo and Harley, Mitchell D.; Ibrahim, Michael; Idier, Deborah; Cardona, Camilo Jaramillo; Lim, Changbin; Mingo, Ivana; O'Grady, Julian and Pais, Daniel; Repina, Oxana; Robinet, Arthur; Roelvink, Dano; Simmons, Joshua; Sogut, Erdinc; Wilson, Katie and Splinter, Kristen D.
Resumen : Robust predictions of shoreline change are critical for sustainable coastal management. Despite advancements in shoreline models, objective benchmarking remains limited. Here we present results from ShoreShop2.0, an international collaborative benchmarking workshop, where 34 groups submitted shoreline change predictions in a blind competition. Subsets of shoreline observations at an undisclosed site (BeachX) over short (5-year) and medium (50-year) periods were withheld from modelers and used for model benchmarking. Using satellite-derived shoreline datasets for calibration and evaluation, the best performing models achieved prediction accuracies on the order of 10 m, comparable to the accuracy of the satellite shoreline data, indicating that certain beaches can be modelled nearly as well as they can be remotely observed. The outcomes from this collaborative benchmarking competition critically review the present state-of-the-art in shoreline change prediction as well as reveal model limitations, facilitate improvements, and offer insights for advancing shoreline-prediction capabilities.
Palabras clave : SEA-LEVEL RISE; CROSS-SHORE; BEACHES; COASTAL; COMPLEXITY; LONGSHORE; ROTATION; TIME
Fecha de publicación : 2025
Editorial : SPRINGERNATURE
Tipo de documento: Article
Idioma: 
DOI: 10.1038/s43247-025-02550-4
URI : http://dspace.azti.es/handle/24689/2507
E-ISSN: 2662-4435
Patrocinador: ARC Future Fellowship [FT220100009]
US Geological Survey Research Co-op [G21AC10672]
Our Changing Coast Project [MBIE-NZ RTVU2206]
USGS Coastal and Marine Hazards and Resources Program
ThinkInAzul program - MCIN/Ministerio de Ciencia e Innovacion
European Union NextGeneration EU [PRTR-C17.I1]
Comunidad de Cantabria
Margarita Salas post-doctoral fellowship - European Union-NextGenerationEU, Ministry of Universities, and the Recovery and Resilience Facility, through University of Cantabria
Government of Cantabria
European Union NextGenerationEU/PRTR [2023/TCN/003, CPP2022-010118]
Agence Nationale de la Recherche [ANR-21-CE01-0015]
European Union [101107336]
Portuguese Fundacao para a Ciencia e Tecnologia (FCT) [2022.13776.BDANA]
KOSTARISK joint laboratory
Programa de Movilidad del Personal Investigador Doctor del Gobierno Vasco
JSPS KAKENHI [24K00996]
Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan [JPMXD0722678534]
Agence Nationale de la Recherche (ANR) [ANR-21-CE01-0015] Funding Source: Agence Nationale de la Recherche (ANR)
Aparece en las tipos de publicación: Artículos científicos



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.