Por favor, use este identificador para citar o enlazar este ítem: http://dspace.azti.es/handle/24689/2629
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMao, Yongjing-
dc.contributor.authorCoco, Giovanni-
dc.contributor.authorVitousek, Sean-
dc.contributor.authorAntolinez, Jose A. A.-
dc.contributor.authorAzorakos, Georgios-
dc.contributor.authorBanno, Masayuki-
dc.contributor.authorBouvier, Clement and Bryan, Karin R.-
dc.contributor.authorCagigal, Laura-
dc.contributor.authorCalcraft, Kit-
dc.contributor.authorCastelle, Bruno-
dc.contributor.authorChen, Xinyu-
dc.contributor.authorD'Anna, Maurizio-
dc.contributor.authorde Freitas Pereira, Lucas-
dc.contributor.authorde Santiago, Inaki-
dc.contributor.authorDeshmukh, Aditya N. Dong, Bixuan and Elghandour, Ahmed-
dc.contributor.authorGohari, Amirmahdi-
dc.contributor.authorde la Pena, Eduardo and Harley, Mitchell D.-
dc.contributor.authorIbrahim, Michael-
dc.contributor.authorIdier, Deborah-
dc.contributor.authorCardona, Camilo Jaramillo-
dc.contributor.authorLim, Changbin-
dc.contributor.authorMingo, Ivana-
dc.contributor.authorO'Grady, Julian and Pais, Daniel-
dc.contributor.authorRepina, Oxana-
dc.contributor.authorRobinet, Arthur-
dc.contributor.authorRoelvink, Dano-
dc.contributor.authorSimmons, Joshua-
dc.contributor.authorSogut, Erdinc-
dc.contributor.authorWilson, Katie and Splinter, Kristen D.-
dc.date.accessioned2026-01-22T14:01:28Z-
dc.date.available2026-01-22T14:01:28Z-
dc.date.issued2025-
dc.identifierWOS:001534264400001-
dc.identifier.urihttp://dspace.azti.es/handle/24689/2629-
dc.description.abstractRobust predictions of shoreline change are critical for sustainable coastal management. Despite advancements in shoreline models, objective benchmarking remains limited. Here we present results from ShoreShop2.0, an international collaborative benchmarking workshop, where 34 groups submitted shoreline change predictions in a blind competition. Subsets of shoreline observations at an undisclosed site (BeachX) over short (5-year) and medium (50-year) periods were withheld from modelers and used for model benchmarking. Using satellite-derived shoreline datasets for calibration and evaluation, the best performing models achieved prediction accuracies on the order of 10 m, comparable to the accuracy of the satellite shoreline data, indicating that certain beaches can be modelled nearly as well as they can be remotely observed. The outcomes from this collaborative benchmarking competition critically review the present state-of-the-art in shoreline change prediction as well as reveal model limitations, facilitate improvements, and offer insights for advancing shoreline-prediction capabilities.-
dc.language.isoEnglish-
dc.publisherSPRINGERNATURE-
dc.subjectSEA-LEVEL RISE-
dc.subjectCROSS-SHORE-
dc.subjectBEACHES-
dc.subjectCOASTAL-
dc.subjectCOMPLEXITY-
dc.subjectLONGSHORE-
dc.subjectROTATION-
dc.subjectTIME-
dc.titleBenchmarking shoreline prediction models over multi-decadal timescales-
dc.typeArticle-
dc.identifier.journalCOMMUNICATIONS EARTH \& ENVIRONMENT-
dc.format.volume6-
dc.contributor.funderARC Future Fellowship [FT220100009]-
dc.contributor.funderUS Geological Survey Research Co-op [G21AC10672]-
dc.contributor.funderOur Changing Coast Project [MBIE-NZ RTVU2206]-
dc.contributor.funderUSGS Coastal and Marine Hazards and Resources Program-
dc.contributor.funderThinkInAzul program - MCIN/Ministerio de Ciencia e Innovacion-
dc.contributor.funderEuropean Union NextGeneration EU [PRTR-C17.I1]-
dc.contributor.funderComunidad de Cantabria-
dc.contributor.funderMargarita Salas post-doctoral fellowship - European Union-NextGenerationEU, Ministry of Universities, and the Recovery and Resilience Facility, through University of Cantabria-
dc.contributor.funderGovernment of Cantabria-
dc.contributor.funderEuropean Union NextGenerationEU/PRTR [2023/TCN/003, CPP2022-010118]-
dc.contributor.funderAgence Nationale de la Recherche [ANR-21-CE01-0015]-
dc.contributor.funderEuropean Union [101107336]-
dc.contributor.funderPortuguese Fundacao para a Ciencia e Tecnologia (FCT) [2022.13776.BDANA]-
dc.contributor.funderKOSTARISK joint laboratory-
dc.contributor.funderPrograma de Movilidad del Personal Investigador Doctor del Gobierno Vasco-
dc.contributor.funderJSPS KAKENHI [24K00996]-
dc.contributor.funderMinistry of Education, Culture, Sports, Science and Technology (MEXT), Japan [JPMXD0722678534]-
dc.contributor.funderAgence Nationale de la Recherche (ANR) [ANR-21-CE01-0015] Funding Source: Agence Nationale de la Recherche (ANR)-
dc.identifier.e-issn2662-4435-
dc.identifier.doi10.1038/s43247-025-02550-4-
Aparece en las tipos de publicación: Artículos científicos



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.