Por favor, use este identificador para citar o enlazar este ítem: http://dspace.azti.es/handle/24689/627
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Título : A Marine Spatial Planning Approach to Select Suitable Areas for Installing Wave Energy Converters (WECs), on the Basque Continental Shelf (Bay of Biscay)
Autor : Galparsoro, Ibon; Liria, Pedro; Legorburu, Irati; Bald, Juan; Ruiz-Minguela, Pablo; Perez, German; Torre-Enciso, Yago; Gonzalez, Manuel; Borja, Angel; Chust, Guillem; Marques, Javier
Citación : COASTAL MANAGEMENT, 2012, 40, 1-19
Resumen : Recently, considerable interest has been generated in the wave energy production. As a new use of the ocean, a Spatial Planning approach is proposed to provide a mechanism to achieve consensus among the sectors operating at present, together with the identification of the most suitable locations to accommodate the Wave Energy Converters (WECs), in the near future. In this contribution: (a) a methodology for the establishment of a Suitability Index (SI) for WECs installation location selection is proposed; (b) the spatial distribution of the SI is mapped; and finally, (c) the accessible wave energy potential has been calculated for the entire Basque continental shelf. As the SI represents the appropriateness of several locations for WECs installation, while minimizing the conflict with other marine uses, the first step in the development of the analysis involved gathering all such information that may be likely to determine, or influence, the decision-making process. Seventeen information layers (among them 10 technical, 4 environmental, and 3 socioeconomical), corresponding to the identified key factors, including the theoretical wave energy in the study area, were generated to define their spatial distribution. Geographical Information System algorithms were used then in the assessment of the total theoretical energy potential and the accessible theoretical energy potential; these were calculated excluding areas where conflicts with other uses occur, such as navigation regulations or designated Marine Protected Areas. The resulting map indicates that, taking into account the zones not affected by ``use conflicts,�� together with the estimated energy performance of the most advanced WECs technology, the potential energy produced in the study area could supply between 37\% and 50\% of the electrical consumption of households in the Basque Country. This contribution could avoid the annual emission of 0.96 to 1.54 million tons of CO2 into the atmosphere.
Palabras clave : GIS; Marine Spatial Planning; renewable energy; wave energy; RENEWABLE ENERGY; METHODOLOGICAL APPROACH; OCEAN ENERGY; EXTRACTION; RESOURCES; SYSTEMS; TECHNOLOGIES; INFORMATION; STRATEGY; IMPACT
Fecha de publicación : 2012
Editorial : TAYLOR \& FRANCIS INC
Tipo de documento: Article
Idioma: Inglés
DOI: 10.1080/08920753.2011.637483
URI : http://dspace.azti.es/handle/24689/627
ISSN : 0892-0753
Patrocinador: Basque Energy Board (EVE)
European MESMA [226661]
Technological Centres Foundation of the Basque Country
Aparece en las tipos de publicación: Artículos científicos



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.