Por favor, use este identificador para citar o enlazar este ítem: http://dspace.azti.es/handle/24689/960
Ficheros en este ítem:
Fichero Tamaño Formato  
Characterization of carbonate.pdf784,94 kBAdobe PDFVisualizar/Abrir
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorLastra Luque, Patricia-
dc.contributor.authorBelen Sanchez-Ilarduya, Maria-
dc.contributor.authorSarmiento, Alfredo-
dc.contributor.authorMurua, Hilario-
dc.contributor.authorArrizabalaga, Haritz-
dc.date.accessioned2020-10-07T14:24:56Z-
dc.date.available2020-10-07T14:24:56Z-
dc.date.issued2019-
dc.identifierISI:000475842100002-
dc.identifier.citationPEERJ, 2019, 7-
dc.identifier.issn2167-8359-
dc.identifier.urihttp://dspace.azti.es/handle/24689/960-
dc.description.abstractThe mineral component of fish otoliths (ear bones), which is aragonitic calcium carbonate (CaCO3), makes this structure the preferred sample choice for measuring biological carbon and oxygen-stable isotopes in order to address fundamental questions in fish ecology and fisheries science. The main drawback is that the removal of otoliths requires sacrificing the specimen, which is particularly impractical for endangered and commercially valuable species such as Atlantic bluefin tuna (Thunnus thynnus) (ABFT). This study explores the suitability of using the first dorsal fin spine bone of ABFT as a non-lethal alternative to otolith analysis or as a complementary hard structure. The fin spines of freshly caught ABFT were collected to identify carbonate ions within the mineral matrix (i.e., hydroxyapatite) and to determine the nature of the carbonate substitution within the crystal lattice, knowledge which is crucial for correct measurement and ecological interpretation of oxygen and carbon stable isotopes of carbonates. Fin spine sections were analyzed via X-ray Photoelectron Spectroscopy (XPS), Raman Spectroscopy, and Fourier Transform InfraRed (FTIR). The XPS survey analysis showed signals of Ca, O, and P (three compositional elements that comprise hydroxyapatite). The Raman and FTIR techniques showed evidence of carbonate ions within the hydroxyapatite matrix, with the IR spectra being the most powerful for identifying the type B carbonate substitution as shown by the carbonate band in the v(2) CO32- domain at similar to 872 cm(-1). The results of this study confirmed the presence of carbonate ions within the mineral matrix of the fin spine bone of ABFT, showing the feasibility of using this calcified structure for analysis of stable isotopes. Overall, our findings will facilitate new approaches to safeguarding commercially valuable and endangered/protected fish species and will open new research avenues to improve fisheries management and species conservation strategies.-
dc.language.isoEnglish-
dc.publisherPEERJ INC-
dc.subjectFin spine-
dc.subjectInorganic matrix-
dc.subjectRaman spectroscopy-
dc.subjectThunnus thynnus-
dc.subjectXPS-
dc.subjectFTIR-
dc.subjectIsotope analysis-
dc.subjectOTOLITH CHEMISTRY-
dc.subjectHYDROXYAPATITE-
dc.subjectPRETREATMENTS-
dc.titleCharacterization of carbonate fraction of the Atlantic bluefin tuna fin spine bone matrix for stable isotope analysis-
dc.typeArticle-
dc.identifier.journalPEERJ-
dc.format.volume7-
dc.contributor.funderEuropean UnionEuropean Union (EU) [753304]-
dc.identifier.doi10.7717/peerj.7176-
Aparece en las tipos de publicación: Artículos científicos



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.