Por favor, use este identificador para citar o enlazar este ítem: http://dspace.azti.es/handle/24689/1116
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Título : Reconstructing ribosomal genes from large scale total RNA meta-transcriptomic data
Autor : Xue, Yaxin; Lanzen, Anders; Jonassen, Inge
Citación : BIOINFORMATICS, 2020, 36, 3365-3371
Resumen : Motivation: Technological advances in meta-transcriptomics have enabled a deeper understanding of the structure and function of microbial communities. `Total RNA' meta-transcriptomics, sequencing of total reverse transcribed RNA, provides a unique opportunity to investigate both the structure and function of active microbial communities from all three domains of life simultaneously. A major step of this approach is the reconstruction of full-length taxonomic marker genes such as the small subunit ribosomal RNA. However, current tools for this purpose are mainly targeted towards analysis of amplicon and metagenomic data and thus lack the ability to handle the massive and complex datasets typically resulting from total RNA experiments. Results: In this work, we introduce MetaRib, a new tool for reconstructing ribosomal gene sequences from total RNA meta-transcriptomic data. MetaRib is based on the popular rRNA assembly program EMIRGE, together with several improvements. We address the challenge posed by large complex datasets by integrating sub-assembly, dereplication and mapping in an iterative approach, with additional post-processing steps. We applied the method to both simulated and real-world datasets. Our results show that MetaRib can deal with larger datasets and recover more rRNA genes, which achieve around 60 times speedup and higher F1 score compared to EMIRGE in simulated datasets. In the real-world dataset, it shows similar trends but recovers more contigs compared with a previous analysis based on random sub-sampling, while enabling the comparison of individual contig abundances across samples for the first time.
Palabras clave : MICROBIAL DIVERSITY; METATRANSCRIPTOMICS; COMMUNITIES
Fecha de publicación : 2020
Editorial : OXFORD UNIV PRESS
Tipo de documento: Article
Idioma: 
DOI: 10.1093/bioinformatics/btaa177
URI : http://dspace.azti.es/handle/24689/1116
ISSN : 1367-4803
E-ISSN: 1460-2059
Aparece en las tipos de publicación: Artículos científicos



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.