Mesedez, erabili identifikatzaile hau item hau aipatzeko edo estekatzeko: http://dspace.azti.es/handle/24689/1116
Item honetako fitxategiak:
Ez dago item honi loturiko fitxategirik
Titulua: Reconstructing ribosomal genes from large scale total RNA meta-transcriptomic data
Egilea: Xue, Yaxin; Lanzen, Anders; Jonassen, Inge
Zitazioa: BIOINFORMATICS, 2020, 36, 3365-3371
Laburpena: Motivation: Technological advances in meta-transcriptomics have enabled a deeper understanding of the structure and function of microbial communities. `Total RNA' meta-transcriptomics, sequencing of total reverse transcribed RNA, provides a unique opportunity to investigate both the structure and function of active microbial communities from all three domains of life simultaneously. A major step of this approach is the reconstruction of full-length taxonomic marker genes such as the small subunit ribosomal RNA. However, current tools for this purpose are mainly targeted towards analysis of amplicon and metagenomic data and thus lack the ability to handle the massive and complex datasets typically resulting from total RNA experiments. Results: In this work, we introduce MetaRib, a new tool for reconstructing ribosomal gene sequences from total RNA meta-transcriptomic data. MetaRib is based on the popular rRNA assembly program EMIRGE, together with several improvements. We address the challenge posed by large complex datasets by integrating sub-assembly, dereplication and mapping in an iterative approach, with additional post-processing steps. We applied the method to both simulated and real-world datasets. Our results show that MetaRib can deal with larger datasets and recover more rRNA genes, which achieve around 60 times speedup and higher F1 score compared to EMIRGE in simulated datasets. In the real-world dataset, it shows similar trends but recovers more contigs compared with a previous analysis based on random sub-sampling, while enabling the comparison of individual contig abundances across samples for the first time.
Gako-hitzak: MICROBIAL DIVERSITY; METATRANSCRIPTOMICS; COMMUNITIES
Gordailuaren-data: 2020
Argitalpen: OXFORD UNIV PRESS
Dokumentu mota: Article
Hizkuntza: 
DOI: 10.1093/bioinformatics/btaa177
URI: http://dspace.azti.es/handle/24689/1116
ISSN: 1367-4803
E-ISSN: 1460-2059
Bildumetan azaltzen da:Artículos científicos



DSpaceko itemak copyright bidez babestuta daude, eskubide guztiak gordeta, baldin eta kontrakoa adierazten ez bada.