Please use this identifier to cite or link to this item: http://dspace.azti.es/handle/24689/1561
Files in This Item:
There are no files associated with this item.
Title: Improvement of Oil Valorization Extracted from Fish By-Products Using a Handheld near Infrared Spectrometer Coupled with Chemometrics
Authors: Nieto-Ortega, Sonia; Olabarrieta, Idoia; Saitua, Eduardo; Arana, Gorka; Foti, Giuseppe; Melado-Herreros, Angela
Abstract: A handheld near infrared (NIR) spectrometer was used for on-site determination of the fatty acids (FAs) composition of industrial fish oils from fish by-products. Partial least square regression (PLSR) models were developed to correlate NIR spectra with the percentage of saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), polyunsaturated fatty acids (PUFAs) and, among them, omega-3 (omega-3) and omega-6 (omega-6) FAs. In a first step, the data were divided into calibration validation datasets, obtaining good results regarding R-2 values, root mean square error of prediction (RMSEP) and bias. In a second step, all these data were used to create a new calibration, which was uploaded to the handheld device and tested with an external validation set in real time. Evaluation of the external test set for SFAs, MUFAs, PUFAs and omega-3 models showed promising results, with R-2 values of 0.98, 0.97, 0.97 and 0.99; RMSEP (\%) of 0.94, 1.71, 1.11 and 0.98; and bias (\%) values of -0.78, -0.12, -0.80 and -0.67, respectively. However, although omega-6 models achieved a good R-2 value (0.95), the obtained RMSEP was considered high (2.08\%), and the bias was not acceptable (-1.76\%). This was corrected by applying bias and slope correction (BSC), obtaining acceptable values of R-2 (0.95), RMSEP (1.09\%) and bias (-0.05\%). This work goes a step further in the technology readiness level (TRL) of handheld NIR sensor solutions for the fish by-product recovery industry.
Keywords: no-waste; omega-3; circular economy; smart sensors; reuse; fish oil industry; recovery; chemometrics; lipid profile; FATTY-ACID-COMPOSITION; QUALITY PARAMETERS; NIR SPECTROSCOPY; VEGETABLE-OILS; OMEGA-3; QUANTIFICATION; CLASSIFICATION; ADULTERATION; REGRESSION; PROFILES
Issue Date: 2022
Publisher: MDPI
Type: Article
Language: 
DOI: 10.3390/foods11081092
URI: http://dspace.azti.es/handle/24689/1561
E-ISSN: 2304-8158
Funder: Basque Government-Department of Economic Development, Sustainability and Environment-Vice Dept. of Agriculture, Fishing and Food Policy, Directorate of Quality and Food Industries
Appears in Publication types:Artículos científicos



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.