Por favor, use este identificador para citar o enlazar este ítem: http://dspace.azti.es/handle/24689/256
Ficheros en este ítem:
Fichero Tamaño Formato  
anisotropic response.pdf956,34 kBAdobe PDFVisualizar/Abrir
Título : Anisotropic response of surface circulation to wind forcing, as inferred from high-frequency radar currents in the southeastern Bay of Biscay
Autor : Fontan, Almudena; Cornuelle, Bruce
Citación : JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2015, 120, 2945-2957
Resumen : The short-term (less than 20 days) response of surface circulation to wind has been determined in waters of the southeastern Bay of Biscay, using wind impulse response (time domain) and transfer (frequency domain) functions relating high-frequency radar currents and reanalysis winds. The response of surface currents is amplified at the near-inertial frequency and the low-frequency and it varies spatially. The analysis indicates that the response of the ocean to the wind is slightly anisotropic, likely due to pressure gradients and friction induced by the bottom and coastline boundaries in this region. Thus, the transfer function at the near-inertial frequency decreases onshore due to the coastline inhibition of circularly polarized near-inertial motion. In contrast, the low-frequency transfer function is enhanced toward the coast as a result of the geostrophic balance between the cross-shore pressure gradient and the Coriolis forces. The transfer functions also vary with season. In summer, the current response to wind is expected to be stronger but shallower due to stratification; in winter, the larger mixed layer depth results in a weaker but deeper response. The results obtained are consistent with the theoretical description of wind-driven circulation and can be used to develop a statistical model with a broad range of applications including accurate oceanic forecasting and understanding of the coupled atmosphere-ocean influence on marine ecosystems.
Palabras clave : wind-driven circulation; anisotropic; wind impulse response function; transfer function; high-frequency radar; Bay of Biscay; SOUTHERN BAY; OCEAN; VARIABILITY; CLIMATE; PATTERNS; DRIVEN; REGION; MODEL
Fecha de publicación : 2015
Editorial : AMER GEOPHYSICAL UNION
Tipo de documento: Article
Idioma: Inglés
DOI: 10.1002/2014JC010671
URI : http://dspace.azti.es/handle/24689/256
ISSN : 2169-9275
E-ISSN: 2169-9291
Patrocinador: Research Mobility and Improvement Program of the Department of Education, Language Policy and Culture of the Basque Government
Ministry of Economy and Competitiveness \[CGL2013-45198-C2-2-R]
Department of Economic Development and Competitiveness of the Basque Government
NOAA \[NA10OAR4320156]
National Science Foundation (NSF)
Aparece en las tipos de publicación: Artículos científicos



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.