Por favor, use este identificador para citar o enlazar este ítem: http://dspace.azti.es/handle/24689/1690
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Título : Combining fishery data through integrated species distribution models
Autor : Paradinas, Iosu; Illian, Janine B.; Alonso-Fernaendez, Alexandre; Pennino, Maria Grazia; Smout, Sophie
Citación : ICES JOURNAL OF MARINE SCIENCE, 2023, 80, 2579-2590
Resumen : Species Distribution Models are pivotal for fisheries management. There has been an increasing number of fishery data sources available, making data integration an attractive way to improve model predictions. A wide range of methods have been applied to integrate different datasets in different disciplines. We focus on the use of Integrated Species Distribution Models (ISDMs) due to their capacity to formally accommodate different types of data and scale proportional gear efficiencies. ISDMs use joint modelling to integrate information from different data sources to improve parameter estimation by fitting shared environmental, temporal and spatial effects. We illustrate this method first using a simulated example, and then apply it to a case study that combines data coming from a fishery-independent trawl survey and a fishery-dependent trammel net observations on Solea solea. We explore the sensitivity of model outputs to several weightings for the commercial data and also compare integrated model results with ensemble modelling to combine population trends in the case study. We obtain similar results but discuss that ensemble modelling requires both response variables and link functions to be the same across models. We conclude by discussing the flexibility and requirements of ISDMs to formally combine different fishery datasets.
Palabras clave : essential fish habitat; fish distribution modelling; fisheries management; integrated species distribution modelling; spatial modelling; STOCK; PREDICTION; ABUNDANCE; JOINT; CATCH; SIZE
Fecha de publicación : 2023
Editorial : OXFORD UNIV PRESS
Tipo de documento: Article; Early Access
Idioma: 
DOI: 10.1093/icesjms/fsad069
URI : http://dspace.azti.es/handle/24689/1690
ISSN : 1054-3139
E-ISSN: 1095-9289
Patrocinador: European Commission [GAP-847014]
MSCA fellowship
project IMPRESS [RTI2018-099868-B-I00]
ERDF
Ministry of Science, Innovation, and Universities - State Research Agency
Aparece en las tipos de publicación: Artículos científicos



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.