Mesedez, erabili identifikatzaile hau item hau aipatzeko edo estekatzeko: http://dspace.azti.es/handle/24689/1690
Item honetako fitxategiak:
Ez dago item honi loturiko fitxategirik
Titulua: Combining fishery data through integrated species distribution models
Egilea: Paradinas, Iosu; Illian, Janine B.; Alonso-Fernaendez, Alexandre; Pennino, Maria Grazia; Smout, Sophie
Zitazioa: ICES JOURNAL OF MARINE SCIENCE, 2023, 80, 2579-2590
Laburpena: Species Distribution Models are pivotal for fisheries management. There has been an increasing number of fishery data sources available, making data integration an attractive way to improve model predictions. A wide range of methods have been applied to integrate different datasets in different disciplines. We focus on the use of Integrated Species Distribution Models (ISDMs) due to their capacity to formally accommodate different types of data and scale proportional gear efficiencies. ISDMs use joint modelling to integrate information from different data sources to improve parameter estimation by fitting shared environmental, temporal and spatial effects. We illustrate this method first using a simulated example, and then apply it to a case study that combines data coming from a fishery-independent trawl survey and a fishery-dependent trammel net observations on Solea solea. We explore the sensitivity of model outputs to several weightings for the commercial data and also compare integrated model results with ensemble modelling to combine population trends in the case study. We obtain similar results but discuss that ensemble modelling requires both response variables and link functions to be the same across models. We conclude by discussing the flexibility and requirements of ISDMs to formally combine different fishery datasets.
Gako-hitzak: essential fish habitat; fish distribution modelling; fisheries management; integrated species distribution modelling; spatial modelling; STOCK; PREDICTION; ABUNDANCE; JOINT; CATCH; SIZE
Gordailuaren-data: 2023
Argitalpen: OXFORD UNIV PRESS
Dokumentu mota: Article; Early Access
Hizkuntza: 
DOI: 10.1093/icesjms/fsad069
URI: http://dspace.azti.es/handle/24689/1690
ISSN: 1054-3139
E-ISSN: 1095-9289
Babeslea: European Commission [GAP-847014]
MSCA fellowship
project IMPRESS [RTI2018-099868-B-I00]
ERDF
Ministry of Science, Innovation, and Universities - State Research Agency
Bildumetan azaltzen da:Artículos científicos



DSpaceko itemak copyright bidez babestuta daude, eskubide guztiak gordeta, baldin eta kontrakoa adierazten ez bada.