Por favor, use este identificador para citar o enlazar este ítem: http://dspace.azti.es/handle/24689/2457
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorFigueira, Mario : Conesa, David : Lopez-Quilez, Antonio : Paradinas, Iosu
dc.date.accessioned2025-11-13T12:27:35Z-
dc.date.available2025-11-13T12:27:35Z-
dc.date.issued2025
dc.identifierWOS:001441671300001
dc.identifier.citationENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2025, 32, 495-521
dc.identifier.issn1352-8505
dc.identifier.urihttp://dspace.azti.es/handle/24689/2457-
dc.description.abstractIn ecology and environmental sciences, combining diverse datasets has become an essential tool for managing the increasing complexity and volume of ecological data. However, as data complexity and volume grow, the computational demands of previously proposed models for data integration escalate, creating significant challenges for practical implementation. This study introduces a sequential consensus Bayesian inference procedure designed to offer the flexibility of integrated models while significantly reducing computational costs. The method is based on sequentially updating some model parameters and hyperparameters, and combining information about random effects after the sequential procedure is complete. The implementation of the approach is provided through two different algorithms. The strengths, limitations, and practical use of the method are explained and discussed throughout the methodology and examples. Finally, we demonstrate the method's performance using two different examples with real ecological data, highlighting its strengths and limitations in practical ecological and environmental applications.
dc.language.isoEnglish
dc.publisherSPRINGER
dc.subjectGeostatistics
dc.subjectINLA
dc.subjectPreferential sampling
dc.subjectSequential inference
dc.subjectSPDE
dc.subjectMODELS
dc.titleA computationally efficient procedure for combining ecological datasets by means of sequential consensus inference
dc.typeArticle
dc.identifier.journalENVIRONMENTAL AND ECOLOGICAL STATISTICS
dc.format.page495-521
dc.format.volume32
dc.contributor.funderMinisterio de Ciencia, Innovacion y Universidades of Spain (MCIN/AEI/FEDER, UE)
dc.contributor.funderEuropean Regional Development Fund
dc.contributor.funderGeneralitat Valenciana [CIAICO/2022/165]
dc.contributor.funderMinisterio de Ciencia, Innovacion y Universidades of Spain [RED2022-134202-T]
dc.contributor.funder[PID2022-136455NB-I00]
dc.identifier.e-issn1573-3009
dc.identifier.doi10.1007/s10651-025-00653-x
Aparece en las tipos de publicación: Artículos científicos



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.