Mesedez, erabili identifikatzaile hau item hau aipatzeko edo estekatzeko: http://dspace.azti.es/handle/24689/2457
Item honetako fitxategiak:
Ez dago item honi loturiko fitxategirik
Titulua: A computationally efficient procedure for combining ecological datasets by means of sequential consensus inference
Egilea: Figueira, Mario : Conesa, David : Lopez-Quilez, Antonio : Paradinas, Iosu
Zitazioa: ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2025, 32, 495-521
Laburpena: In ecology and environmental sciences, combining diverse datasets has become an essential tool for managing the increasing complexity and volume of ecological data. However, as data complexity and volume grow, the computational demands of previously proposed models for data integration escalate, creating significant challenges for practical implementation. This study introduces a sequential consensus Bayesian inference procedure designed to offer the flexibility of integrated models while significantly reducing computational costs. The method is based on sequentially updating some model parameters and hyperparameters, and combining information about random effects after the sequential procedure is complete. The implementation of the approach is provided through two different algorithms. The strengths, limitations, and practical use of the method are explained and discussed throughout the methodology and examples. Finally, we demonstrate the method's performance using two different examples with real ecological data, highlighting its strengths and limitations in practical ecological and environmental applications.
Gako-hitzak: Geostatistics; INLA; Preferential sampling; Sequential inference; SPDE; MODELS
Gordailuaren-data: 2025
Argitalpen: SPRINGER
Dokumentu mota: Article
Hizkuntza: 
DOI: 10.1007/s10651-025-00653-x
URI: http://dspace.azti.es/handle/24689/2457
ISSN: 1352-8505
E-ISSN: 1573-3009
Babeslea: Ministerio de Ciencia, Innovacion y Universidades of Spain (MCIN/AEI/FEDER, UE)
European Regional Development Fund
Generalitat Valenciana [CIAICO/2022/165]
Ministerio de Ciencia, Innovacion y Universidades of Spain [RED2022-134202-T]
[PID2022-136455NB-I00]
Bildumetan azaltzen da:Artículos científicos



DSpaceko itemak copyright bidez babestuta daude, eskubide guztiak gordeta, baldin eta kontrakoa adierazten ez bada.