Por favor, use este identificador para citar o enlazar este ítem: http://dspace.azti.es/handle/24689/2457
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Título : A computationally efficient procedure for combining ecological datasets by means of sequential consensus inference
Autor : Figueira, Mario : Conesa, David : Lopez-Quilez, Antonio : Paradinas, Iosu
Citación : ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2025, 32, 495-521
Resumen : In ecology and environmental sciences, combining diverse datasets has become an essential tool for managing the increasing complexity and volume of ecological data. However, as data complexity and volume grow, the computational demands of previously proposed models for data integration escalate, creating significant challenges for practical implementation. This study introduces a sequential consensus Bayesian inference procedure designed to offer the flexibility of integrated models while significantly reducing computational costs. The method is based on sequentially updating some model parameters and hyperparameters, and combining information about random effects after the sequential procedure is complete. The implementation of the approach is provided through two different algorithms. The strengths, limitations, and practical use of the method are explained and discussed throughout the methodology and examples. Finally, we demonstrate the method's performance using two different examples with real ecological data, highlighting its strengths and limitations in practical ecological and environmental applications.
Palabras clave : Geostatistics; INLA; Preferential sampling; Sequential inference; SPDE; MODELS
Fecha de publicación : 2025
Editorial : SPRINGER
Tipo de documento: Article
Idioma: 
DOI: 10.1007/s10651-025-00653-x
URI : http://dspace.azti.es/handle/24689/2457
ISSN : 1352-8505
E-ISSN: 1573-3009
Patrocinador: Ministerio de Ciencia, Innovacion y Universidades of Spain (MCIN/AEI/FEDER, UE)
European Regional Development Fund
Generalitat Valenciana [CIAICO/2022/165]
Ministerio de Ciencia, Innovacion y Universidades of Spain [RED2022-134202-T]
[PID2022-136455NB-I00]
Aparece en las tipos de publicación: Artículos científicos



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.